Abstract

The problem of diffraction from a perfectly conducting wedge is examined with the modified theory of physical optics (MTPO). The exact wedge diffraction coefficient is compared with the asymptotic edge waves of MTPO integral and related surface currents are evaluated. The scattered electric fields are expressed by using these current components. The total, incident and reflected diffracted fields are compared with the exact series solution of the wedge problem, numerically.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B.  Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116–130 (1962).
    [CrossRef] [PubMed]
  2. D. A.  McNamara, C. W. I.  Pistorius, J. A. G.  Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction (Artech House, Norwood, 1990).
  3. G. L.  James, Geometrical Theory of Diffraction for Electromagnetic Waves (IEE Peter Peregrinus Ltd., London, 1976).
  4. A.  Sommerfeld, Optics (Academic Press, New York, 1954).
  5. R. G.  Kouyoumjian, P. B.  Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting screen,” Proc. IEEE 62, 1448–1461 (1974).
    [CrossRef]
  6. S.  Lee, G. A.  Deschamps, “A uniform asymptotic theory of electromagnetic diffraction by a curved wedge,” IEEE Trans. Antennas and Propagat. 24, 25–34 (1976).
    [CrossRef]
  7. T.  Griesser, C. A.  Balanis, “Backscatter analysis of dihedral corner reflectors using physical optics and physical theory of diffraction,” IEEE Trans. Antennas and Propagat. 35, 1137–1147 (1987).
    [CrossRef]
  8. S. W.  Lee, “Comparison of uniform asymptotic theory and Ufimtsev’s theory of electromagnetic edge diffraction,” IEEE Trans. Antennas and Propagat. 25, 162–170 (1977).
    [CrossRef]
  9. W.L.  Stutzman, G. A.  Thiele, Antenna Theory and Design (John Wiley & Sons, New York, 1988).
  10. S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part I — Physical optics approximation,” IEEE Trans. Antennas and Propagat. 39, 1272–1281 (1991).
    [CrossRef]
  11. S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part II — Correction to physical optics solution,” IEEE Trans. Antennas and Propagat. 39, 1282–1292 (1991).
    [CrossRef]
  12. N. D.  Taket, R. E.  Burge, “A physical optics version of geometrical theory diffraction,” IEEE Trans. Antennas and Propagat. 39, 719–731 (1991).
    [CrossRef]
  13. R. E.  Burge, X. C.  Yuan, B. D.  Caroll, N. E.  Fisher, T. J.  Hall, G. A.  Lester, N. D.  Taket, C. J.  Oliver, “Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas and Propagat. 47, 1515–1527 (1999).
    [CrossRef]
  14. A. I.  Papadopoulos, D. P.  Chrissoulidis, “Electric-dipole radiation over a wedge with imperfectly conductive faces: a first-order physical-optics solution,” IEEE Trans. Antennas and Propagat. 47, 1649–1657 (1999).
    [CrossRef]
  15. A. I.  Papadopoulos, D. P.  Chrissoulidis, “A corrected physical-optics solution to 3-d wedge diffraction,” Electromagnetics 20, 79–98 (2000).
    [CrossRef]
  16. Y. Z.  Umul, “Modified theory of physical optics,” Opt. Express 12, 4959–4972 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4959
    [CrossRef] [PubMed]
  17. A.  Ishimaru, Electromagnetic Wave Propagation, Radiation and Scattering (Prentice Hall, New Jersey, 1991).
  18. A. K.  Bhattacharyya, High-Frequency Electromagnetic Techniques (John Wiley & Sons, New York, 1995).

2004 (1)

2000 (1)

A. I.  Papadopoulos, D. P.  Chrissoulidis, “A corrected physical-optics solution to 3-d wedge diffraction,” Electromagnetics 20, 79–98 (2000).
[CrossRef]

1999 (2)

R. E.  Burge, X. C.  Yuan, B. D.  Caroll, N. E.  Fisher, T. J.  Hall, G. A.  Lester, N. D.  Taket, C. J.  Oliver, “Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas and Propagat. 47, 1515–1527 (1999).
[CrossRef]

A. I.  Papadopoulos, D. P.  Chrissoulidis, “Electric-dipole radiation over a wedge with imperfectly conductive faces: a first-order physical-optics solution,” IEEE Trans. Antennas and Propagat. 47, 1649–1657 (1999).
[CrossRef]

1991 (3)

S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part I — Physical optics approximation,” IEEE Trans. Antennas and Propagat. 39, 1272–1281 (1991).
[CrossRef]

S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part II — Correction to physical optics solution,” IEEE Trans. Antennas and Propagat. 39, 1282–1292 (1991).
[CrossRef]

N. D.  Taket, R. E.  Burge, “A physical optics version of geometrical theory diffraction,” IEEE Trans. Antennas and Propagat. 39, 719–731 (1991).
[CrossRef]

1987 (1)

T.  Griesser, C. A.  Balanis, “Backscatter analysis of dihedral corner reflectors using physical optics and physical theory of diffraction,” IEEE Trans. Antennas and Propagat. 35, 1137–1147 (1987).
[CrossRef]

1977 (1)

S. W.  Lee, “Comparison of uniform asymptotic theory and Ufimtsev’s theory of electromagnetic edge diffraction,” IEEE Trans. Antennas and Propagat. 25, 162–170 (1977).
[CrossRef]

1976 (1)

S.  Lee, G. A.  Deschamps, “A uniform asymptotic theory of electromagnetic diffraction by a curved wedge,” IEEE Trans. Antennas and Propagat. 24, 25–34 (1976).
[CrossRef]

1974 (1)

R. G.  Kouyoumjian, P. B.  Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting screen,” Proc. IEEE 62, 1448–1461 (1974).
[CrossRef]

1962 (1)

Balanis, C. A.

T.  Griesser, C. A.  Balanis, “Backscatter analysis of dihedral corner reflectors using physical optics and physical theory of diffraction,” IEEE Trans. Antennas and Propagat. 35, 1137–1147 (1987).
[CrossRef]

Bhattacharyya, A. K.

A. K.  Bhattacharyya, High-Frequency Electromagnetic Techniques (John Wiley & Sons, New York, 1995).

Burge, R. E.

R. E.  Burge, X. C.  Yuan, B. D.  Caroll, N. E.  Fisher, T. J.  Hall, G. A.  Lester, N. D.  Taket, C. J.  Oliver, “Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas and Propagat. 47, 1515–1527 (1999).
[CrossRef]

N. D.  Taket, R. E.  Burge, “A physical optics version of geometrical theory diffraction,” IEEE Trans. Antennas and Propagat. 39, 719–731 (1991).
[CrossRef]

Caroll, B. D.

R. E.  Burge, X. C.  Yuan, B. D.  Caroll, N. E.  Fisher, T. J.  Hall, G. A.  Lester, N. D.  Taket, C. J.  Oliver, “Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas and Propagat. 47, 1515–1527 (1999).
[CrossRef]

Chrissoulidis, D. P.

A. I.  Papadopoulos, D. P.  Chrissoulidis, “A corrected physical-optics solution to 3-d wedge diffraction,” Electromagnetics 20, 79–98 (2000).
[CrossRef]

A. I.  Papadopoulos, D. P.  Chrissoulidis, “Electric-dipole radiation over a wedge with imperfectly conductive faces: a first-order physical-optics solution,” IEEE Trans. Antennas and Propagat. 47, 1649–1657 (1999).
[CrossRef]

Deschamps, G. A.

S.  Lee, G. A.  Deschamps, “A uniform asymptotic theory of electromagnetic diffraction by a curved wedge,” IEEE Trans. Antennas and Propagat. 24, 25–34 (1976).
[CrossRef]

Fisher, N. E.

R. E.  Burge, X. C.  Yuan, B. D.  Caroll, N. E.  Fisher, T. J.  Hall, G. A.  Lester, N. D.  Taket, C. J.  Oliver, “Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas and Propagat. 47, 1515–1527 (1999).
[CrossRef]

Griesser, T.

T.  Griesser, C. A.  Balanis, “Backscatter analysis of dihedral corner reflectors using physical optics and physical theory of diffraction,” IEEE Trans. Antennas and Propagat. 35, 1137–1147 (1987).
[CrossRef]

Hall, T. J.

R. E.  Burge, X. C.  Yuan, B. D.  Caroll, N. E.  Fisher, T. J.  Hall, G. A.  Lester, N. D.  Taket, C. J.  Oliver, “Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas and Propagat. 47, 1515–1527 (1999).
[CrossRef]

Ishimaru, A.

A.  Ishimaru, Electromagnetic Wave Propagation, Radiation and Scattering (Prentice Hall, New Jersey, 1991).

James, G. L.

G. L.  James, Geometrical Theory of Diffraction for Electromagnetic Waves (IEE Peter Peregrinus Ltd., London, 1976).

Keller, J. B.

Kim, S. Y.

S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part II — Correction to physical optics solution,” IEEE Trans. Antennas and Propagat. 39, 1282–1292 (1991).
[CrossRef]

S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part I — Physical optics approximation,” IEEE Trans. Antennas and Propagat. 39, 1272–1281 (1991).
[CrossRef]

Kouyoumjian, R. G.

R. G.  Kouyoumjian, P. B.  Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting screen,” Proc. IEEE 62, 1448–1461 (1974).
[CrossRef]

Lee, S.

S.  Lee, G. A.  Deschamps, “A uniform asymptotic theory of electromagnetic diffraction by a curved wedge,” IEEE Trans. Antennas and Propagat. 24, 25–34 (1976).
[CrossRef]

Lee, S. W.

S. W.  Lee, “Comparison of uniform asymptotic theory and Ufimtsev’s theory of electromagnetic edge diffraction,” IEEE Trans. Antennas and Propagat. 25, 162–170 (1977).
[CrossRef]

Lester, G. A.

R. E.  Burge, X. C.  Yuan, B. D.  Caroll, N. E.  Fisher, T. J.  Hall, G. A.  Lester, N. D.  Taket, C. J.  Oliver, “Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas and Propagat. 47, 1515–1527 (1999).
[CrossRef]

Malherbe, J. A. G.

D. A.  McNamara, C. W. I.  Pistorius, J. A. G.  Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction (Artech House, Norwood, 1990).

McNamara, D. A.

D. A.  McNamara, C. W. I.  Pistorius, J. A. G.  Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction (Artech House, Norwood, 1990).

Oliver, C. J.

R. E.  Burge, X. C.  Yuan, B. D.  Caroll, N. E.  Fisher, T. J.  Hall, G. A.  Lester, N. D.  Taket, C. J.  Oliver, “Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas and Propagat. 47, 1515–1527 (1999).
[CrossRef]

Papadopoulos, A. I.

A. I.  Papadopoulos, D. P.  Chrissoulidis, “A corrected physical-optics solution to 3-d wedge diffraction,” Electromagnetics 20, 79–98 (2000).
[CrossRef]

A. I.  Papadopoulos, D. P.  Chrissoulidis, “Electric-dipole radiation over a wedge with imperfectly conductive faces: a first-order physical-optics solution,” IEEE Trans. Antennas and Propagat. 47, 1649–1657 (1999).
[CrossRef]

Pathak, P. B.

R. G.  Kouyoumjian, P. B.  Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting screen,” Proc. IEEE 62, 1448–1461 (1974).
[CrossRef]

Pistorius, C. W. I.

D. A.  McNamara, C. W. I.  Pistorius, J. A. G.  Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction (Artech House, Norwood, 1990).

Ra, J. W.

S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part I — Physical optics approximation,” IEEE Trans. Antennas and Propagat. 39, 1272–1281 (1991).
[CrossRef]

S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part II — Correction to physical optics solution,” IEEE Trans. Antennas and Propagat. 39, 1282–1292 (1991).
[CrossRef]

Shin, S. Y.

S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part II — Correction to physical optics solution,” IEEE Trans. Antennas and Propagat. 39, 1282–1292 (1991).
[CrossRef]

S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part I — Physical optics approximation,” IEEE Trans. Antennas and Propagat. 39, 1272–1281 (1991).
[CrossRef]

Sommerfeld, A.

A.  Sommerfeld, Optics (Academic Press, New York, 1954).

Stutzman, W.L.

W.L.  Stutzman, G. A.  Thiele, Antenna Theory and Design (John Wiley & Sons, New York, 1988).

Taket, N. D.

R. E.  Burge, X. C.  Yuan, B. D.  Caroll, N. E.  Fisher, T. J.  Hall, G. A.  Lester, N. D.  Taket, C. J.  Oliver, “Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas and Propagat. 47, 1515–1527 (1999).
[CrossRef]

N. D.  Taket, R. E.  Burge, “A physical optics version of geometrical theory diffraction,” IEEE Trans. Antennas and Propagat. 39, 719–731 (1991).
[CrossRef]

Thiele, G. A.

W.L.  Stutzman, G. A.  Thiele, Antenna Theory and Design (John Wiley & Sons, New York, 1988).

Umul, Y. Z.

Yuan, X. C.

R. E.  Burge, X. C.  Yuan, B. D.  Caroll, N. E.  Fisher, T. J.  Hall, G. A.  Lester, N. D.  Taket, C. J.  Oliver, “Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas and Propagat. 47, 1515–1527 (1999).
[CrossRef]

Electromagnetics (1)

A. I.  Papadopoulos, D. P.  Chrissoulidis, “A corrected physical-optics solution to 3-d wedge diffraction,” Electromagnetics 20, 79–98 (2000).
[CrossRef]

IEEE Trans. Antennas and Propagat. (8)

S.  Lee, G. A.  Deschamps, “A uniform asymptotic theory of electromagnetic diffraction by a curved wedge,” IEEE Trans. Antennas and Propagat. 24, 25–34 (1976).
[CrossRef]

T.  Griesser, C. A.  Balanis, “Backscatter analysis of dihedral corner reflectors using physical optics and physical theory of diffraction,” IEEE Trans. Antennas and Propagat. 35, 1137–1147 (1987).
[CrossRef]

S. W.  Lee, “Comparison of uniform asymptotic theory and Ufimtsev’s theory of electromagnetic edge diffraction,” IEEE Trans. Antennas and Propagat. 25, 162–170 (1977).
[CrossRef]

S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part I — Physical optics approximation,” IEEE Trans. Antennas and Propagat. 39, 1272–1281 (1991).
[CrossRef]

S. Y.  Kim, J. W.  Ra, S. Y.  Shin, “Diffraction by an arbitrary-angled dielectric wedge: Part II — Correction to physical optics solution,” IEEE Trans. Antennas and Propagat. 39, 1282–1292 (1991).
[CrossRef]

N. D.  Taket, R. E.  Burge, “A physical optics version of geometrical theory diffraction,” IEEE Trans. Antennas and Propagat. 39, 719–731 (1991).
[CrossRef]

R. E.  Burge, X. C.  Yuan, B. D.  Caroll, N. E.  Fisher, T. J.  Hall, G. A.  Lester, N. D.  Taket, C. J.  Oliver, “Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas and Propagat. 47, 1515–1527 (1999).
[CrossRef]

A. I.  Papadopoulos, D. P.  Chrissoulidis, “Electric-dipole radiation over a wedge with imperfectly conductive faces: a first-order physical-optics solution,” IEEE Trans. Antennas and Propagat. 47, 1649–1657 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Proc. IEEE (1)

R. G.  Kouyoumjian, P. B.  Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting screen,” Proc. IEEE 62, 1448–1461 (1974).
[CrossRef]

Other (6)

A.  Ishimaru, Electromagnetic Wave Propagation, Radiation and Scattering (Prentice Hall, New Jersey, 1991).

A. K.  Bhattacharyya, High-Frequency Electromagnetic Techniques (John Wiley & Sons, New York, 1995).

D. A.  McNamara, C. W. I.  Pistorius, J. A. G.  Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction (Artech House, Norwood, 1990).

G. L.  James, Geometrical Theory of Diffraction for Electromagnetic Waves (IEE Peter Peregrinus Ltd., London, 1976).

A.  Sommerfeld, Optics (Academic Press, New York, 1954).

W.L.  Stutzman, G. A.  Thiele, Antenna Theory and Design (John Wiley & Sons, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Perfectly conducting wedge geometry

Fig. 2.
Fig. 2.

Incident diffracted fields at the perfectly conducting wedge (MTPO and exact solution)

Fig. 3.
Fig. 3.

Reflected diffracted fields at the perfectly conducting wedge (MTPO and exact solution)

Fig. 4.
Fig. 4.

Total diffracted fields at the perfectly conducting wedge (MTPO and exact solution)

Fig. 5.
Fig. 5.

Reciprocity check of the total diffracted MTPO integral

Fig. 6.
Fig. 6.

Total scattered fields from a perfectly conducting wedge (MTPO and exact solution)

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

D w = D wi D wr
D wi = A ( n ) cos ( π n ) cos ( ϕ ϕ 0 n )
D wr = B ( n ) cos ( π n ) cos ( ϕ + ϕ 0 n )
E t e z kE i 2 π e j π 4 ( x = 0 e jkx cos ϕ 0 e jk R 1 kR 1 I 1 ( ϕ 0 , β 1 ) dx x = 0 e jkx cos ϕ 0 e jk R 2 kR 2 I 2 ( ϕ 0 , β 2 ) dx )
J S = 2 E i Z 0 I 2 ( ϕ 0 , β 2 ) e jkx cos ϕ 0 e z
J A = 2 E i Z 0 I 1 ( ϕ 0 , β 1 ) e jkx cos ϕ 0 e z
E wd = e z E i 2 π e j π 4 [ I 1 ( ϕ 0 , ϕ π ) + I 2 ( ϕ 0 , π ϕ ) ] cos ϕ + cos ϕ 0 e j k ρ k ρ
E dz = E i 2 π e j π 4 ( D wi D wr ) e j k ρ k ρ
I 1 ( ϕ 0 , ϕ π ) = A ( n ) ( cos ϕ + cos ϕ 0 ) cos π n cos ϕ ϕ 0 n , I 2 ( ϕ 0 , π ϕ ) = B ( n ) ( cos ϕ + cos ϕ 0 ) cos π n cos ϕ ϕ 0 n
I 1 ( ϕ 0 , β 1 ) = A ( n ) ( cos ϕ 0 cos β 1 ) cos π n cos π + β 1 ϕ 0 n , I 2 ( ϕ 0 , β 2 ) = B ( n ) ( cos ϕ 0 + cos β 2 ) cos π n cos π β 2 ϕ 0 n
E tz = E iz + E rz
E iz = k E i A ( n ) 2 π e j π 4 0 cos ϕ 0 cos β 1 cos π n cos π + β 1 ϕ 0 n e j k x cos ϕ 0 e jkR kR dx
E rz = k E i B ( n ) 2 π e j π 4 0 cos ϕ 0 cos β 2 cos π n cos π β 2 + ϕ 0 n e j k x cos ϕ 0 e jkR kR dx
β s = ϕ 0
f ( x s ) k E i Q ( n ) 2 π e j π 4 lim β ϕ 0 cos ϕ 0 cos β cos π n cos π ( β ϕ 0 ) n
E i Q ( n ) 1 n sin π n e j k ρ cos ( ϕ ± ϕ 0 ) = E i e j k ρ cos ( ϕ ± ϕ 0 )
E rz = k E i sin ( π n ) n 2 π e j π 4 0 cos ϕ 0 cos β 2 cos π n cos π β 2 + ϕ 0 n e j k x cos ϕ 0 e jkR kR dx
E iz = k E i sin ( π n ) n 2 π e j π 4 0 cos ϕ 0 cos β 1 cos π n cos π β 1 + ϕ 0 n e j k x cos ϕ 0 e jkR kR dx
E z = E i 4 π ψ m = 1 e j ϑ m π 2 J ϑ m ( k ρ ) sin ϑ m ϕ sin ϑ m ϕ 0

Metrics