Abstract

Photoinduced anisotropy of a photochromic pyrrylfulgide/PMMA film was investigated by using two linearly polarized beams. Excitation by linearly polarized light induces into the film an optical axis that has the same polarization as the excitation beam. This causes a change of the transmittance and of the polarization state of the detection beam. With a microscope a matrix of 4×4 light spots with different polarizations were recorded in the pyrrylfulgide/PMMA film. If readout with non-polarized light, the matrix of light spots show no information pattern. However, when readout with differently polarized lights, different patterns can be displayed. The experiment demonstrates that pyrrylfulgide/PMMA films can be used to hide two differently polarized patterns, which may be applied in camouflage technology.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.  Yokoyama, “Fulgide for memories and switches,” Chem. Rev. 100, 1717–1739 (2000).
    [CrossRef]
  2. F.  Matsui, H.  Taniguchi, Y.  Yokoyama, K.  Sugiyama, Y.  Kurita, “Application of photochromic 5-dimethylaminoindolylfulgide to photo-mode erasable opticel media with non-destructive readout ability based on wavelength dependence of bleaching quantum yield,” Chem. Lett. 10, 1869–1872 (1994).
    [CrossRef]
  3. L.  Yu, Y.  Ming, M.  Fan, H.  Yu, Q.  Ye, “Synthesis and applications of photochromic fulgides in optical storage,” Sci. in Chin. (Ser. B) 25, 799–803 (1995).
  4. K. D.  Belfield, Y.  Liu, R. A.  Negres, M.  Fan, G.  Pan, D. J.  Hagan, F. E.  Henandez, “Two-Photon photochromism of an organic material for holographic recording,” Chem. Mater. 14, 3663–3667 (2002).
    [CrossRef]
  5. N.  Liao, M.  Gong, D.  Xu, G.  Qi, K.  Zhang, “Single-beam two-photon three-dimensional optical storage in a pyrryl-substituted fulgide photochromic material,” Chin. Sci. Bull. 46, 1856–1859 (2001).
    [CrossRef]
  6. M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
    [CrossRef]
  7. Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).
  8. P.  Rochon, J.  Gosselin, A.  Natansohn, S.  Xie, “Optically induced and erased birefringence and dichromism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
    [CrossRef]
  9. E. Y.  Korchemskaya, D. A.  Stepanchikov, T. V.  Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mat. 14, 185–190 (2000).
    [CrossRef]
  10. J. M. C.  Jonathan, M.  May, “Anisotropy induced in a silver-chloride emulsion by two incoherent and perpendicular light vibrations,” Opt. Comm. 28, 295–299 (1979).
    [CrossRef]
  11. S.  Calixto, R. A.  Lessard, “Real-time polarizing optical image processing with dyed plastic,” Appl. Opt. 24, 773–776 (1985).
    [CrossRef] [PubMed]
  12. Y.  Okada-Shudo, I.  Yamaguchi, H.  Tomioka, H.  Sasabe, “Real-time image processing using polarization discrimination of bacteriorhodopsin,” Synth. Met. 81, 147–149 (1996).
    [CrossRef]
  13. E. Y.  Korchemskaya, D. A.  Stepanchikov, “Real-time selective image processing using photoinduced anisotropy of bacteriorhodopsin polymer films,” Proc. SPIE 3486, 156–164 (1998).
    [CrossRef]

2004 (1)

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

2003 (1)

M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
[CrossRef]

2002 (1)

K. D.  Belfield, Y.  Liu, R. A.  Negres, M.  Fan, G.  Pan, D. J.  Hagan, F. E.  Henandez, “Two-Photon photochromism of an organic material for holographic recording,” Chem. Mater. 14, 3663–3667 (2002).
[CrossRef]

2001 (1)

N.  Liao, M.  Gong, D.  Xu, G.  Qi, K.  Zhang, “Single-beam two-photon three-dimensional optical storage in a pyrryl-substituted fulgide photochromic material,” Chin. Sci. Bull. 46, 1856–1859 (2001).
[CrossRef]

2000 (2)

Y.  Yokoyama, “Fulgide for memories and switches,” Chem. Rev. 100, 1717–1739 (2000).
[CrossRef]

E. Y.  Korchemskaya, D. A.  Stepanchikov, T. V.  Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mat. 14, 185–190 (2000).
[CrossRef]

1998 (1)

E. Y.  Korchemskaya, D. A.  Stepanchikov, “Real-time selective image processing using photoinduced anisotropy of bacteriorhodopsin polymer films,” Proc. SPIE 3486, 156–164 (1998).
[CrossRef]

1996 (1)

Y.  Okada-Shudo, I.  Yamaguchi, H.  Tomioka, H.  Sasabe, “Real-time image processing using polarization discrimination of bacteriorhodopsin,” Synth. Met. 81, 147–149 (1996).
[CrossRef]

1995 (1)

L.  Yu, Y.  Ming, M.  Fan, H.  Yu, Q.  Ye, “Synthesis and applications of photochromic fulgides in optical storage,” Sci. in Chin. (Ser. B) 25, 799–803 (1995).

1994 (1)

F.  Matsui, H.  Taniguchi, Y.  Yokoyama, K.  Sugiyama, Y.  Kurita, “Application of photochromic 5-dimethylaminoindolylfulgide to photo-mode erasable opticel media with non-destructive readout ability based on wavelength dependence of bleaching quantum yield,” Chem. Lett. 10, 1869–1872 (1994).
[CrossRef]

1992 (1)

P.  Rochon, J.  Gosselin, A.  Natansohn, S.  Xie, “Optically induced and erased birefringence and dichromism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

1985 (1)

1979 (1)

J. M. C.  Jonathan, M.  May, “Anisotropy induced in a silver-chloride emulsion by two incoherent and perpendicular light vibrations,” Opt. Comm. 28, 295–299 (1979).
[CrossRef]

Belfield, K. D.

K. D.  Belfield, Y.  Liu, R. A.  Negres, M.  Fan, G.  Pan, D. J.  Hagan, F. E.  Henandez, “Two-Photon photochromism of an organic material for holographic recording,” Chem. Mater. 14, 3663–3667 (2002).
[CrossRef]

Calixto, S.

Chen, G.

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
[CrossRef]

Chen, Y.

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
[CrossRef]

Dyukova, T. V.

E. Y.  Korchemskaya, D. A.  Stepanchikov, T. V.  Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mat. 14, 185–190 (2000).
[CrossRef]

Fan, M.

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
[CrossRef]

K. D.  Belfield, Y.  Liu, R. A.  Negres, M.  Fan, G.  Pan, D. J.  Hagan, F. E.  Henandez, “Two-Photon photochromism of an organic material for holographic recording,” Chem. Mater. 14, 3663–3667 (2002).
[CrossRef]

L.  Yu, Y.  Ming, M.  Fan, H.  Yu, Q.  Ye, “Synthesis and applications of photochromic fulgides in optical storage,” Sci. in Chin. (Ser. B) 25, 799–803 (1995).

Gong, M.

N.  Liao, M.  Gong, D.  Xu, G.  Qi, K.  Zhang, “Single-beam two-photon three-dimensional optical storage in a pyrryl-substituted fulgide photochromic material,” Chin. Sci. Bull. 46, 1856–1859 (2001).
[CrossRef]

Gosselin, J.

P.  Rochon, J.  Gosselin, A.  Natansohn, S.  Xie, “Optically induced and erased birefringence and dichromism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

Hagan, D. J.

K. D.  Belfield, Y.  Liu, R. A.  Negres, M.  Fan, G.  Pan, D. J.  Hagan, F. E.  Henandez, “Two-Photon photochromism of an organic material for holographic recording,” Chem. Mater. 14, 3663–3667 (2002).
[CrossRef]

Han, Y.

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
[CrossRef]

Henandez, F. E.

K. D.  Belfield, Y.  Liu, R. A.  Negres, M.  Fan, G.  Pan, D. J.  Hagan, F. E.  Henandez, “Two-Photon photochromism of an organic material for holographic recording,” Chem. Mater. 14, 3663–3667 (2002).
[CrossRef]

Jonathan, J. M. C.

J. M. C.  Jonathan, M.  May, “Anisotropy induced in a silver-chloride emulsion by two incoherent and perpendicular light vibrations,” Opt. Comm. 28, 295–299 (1979).
[CrossRef]

Korchemskaya, E. Y.

E. Y.  Korchemskaya, D. A.  Stepanchikov, T. V.  Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mat. 14, 185–190 (2000).
[CrossRef]

E. Y.  Korchemskaya, D. A.  Stepanchikov, “Real-time selective image processing using photoinduced anisotropy of bacteriorhodopsin polymer films,” Proc. SPIE 3486, 156–164 (1998).
[CrossRef]

Kurita, Y.

F.  Matsui, H.  Taniguchi, Y.  Yokoyama, K.  Sugiyama, Y.  Kurita, “Application of photochromic 5-dimethylaminoindolylfulgide to photo-mode erasable opticel media with non-destructive readout ability based on wavelength dependence of bleaching quantum yield,” Chem. Lett. 10, 1869–1872 (1994).
[CrossRef]

Lei, M.

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
[CrossRef]

Lessard, R. A.

Liao, N.

N.  Liao, M.  Gong, D.  Xu, G.  Qi, K.  Zhang, “Single-beam two-photon three-dimensional optical storage in a pyrryl-substituted fulgide photochromic material,” Chin. Sci. Bull. 46, 1856–1859 (2001).
[CrossRef]

Liu, Y.

K. D.  Belfield, Y.  Liu, R. A.  Negres, M.  Fan, G.  Pan, D. J.  Hagan, F. E.  Henandez, “Two-Photon photochromism of an organic material for holographic recording,” Chem. Mater. 14, 3663–3667 (2002).
[CrossRef]

Matsui, F.

F.  Matsui, H.  Taniguchi, Y.  Yokoyama, K.  Sugiyama, Y.  Kurita, “Application of photochromic 5-dimethylaminoindolylfulgide to photo-mode erasable opticel media with non-destructive readout ability based on wavelength dependence of bleaching quantum yield,” Chem. Lett. 10, 1869–1872 (1994).
[CrossRef]

May, M.

J. M. C.  Jonathan, M.  May, “Anisotropy induced in a silver-chloride emulsion by two incoherent and perpendicular light vibrations,” Opt. Comm. 28, 295–299 (1979).
[CrossRef]

Meng, X.

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

Menke, N.

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
[CrossRef]

Ming, Y.

L.  Yu, Y.  Ming, M.  Fan, H.  Yu, Q.  Ye, “Synthesis and applications of photochromic fulgides in optical storage,” Sci. in Chin. (Ser. B) 25, 799–803 (1995).

Natansohn, A.

P.  Rochon, J.  Gosselin, A.  Natansohn, S.  Xie, “Optically induced and erased birefringence and dichromism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

Negres, R. A.

K. D.  Belfield, Y.  Liu, R. A.  Negres, M.  Fan, G.  Pan, D. J.  Hagan, F. E.  Henandez, “Two-Photon photochromism of an organic material for holographic recording,” Chem. Mater. 14, 3663–3667 (2002).
[CrossRef]

Okada-Shudo, Y.

Y.  Okada-Shudo, I.  Yamaguchi, H.  Tomioka, H.  Sasabe, “Real-time image processing using polarization discrimination of bacteriorhodopsin,” Synth. Met. 81, 147–149 (1996).
[CrossRef]

Pan, G.

K. D.  Belfield, Y.  Liu, R. A.  Negres, M.  Fan, G.  Pan, D. J.  Hagan, F. E.  Henandez, “Two-Photon photochromism of an organic material for holographic recording,” Chem. Mater. 14, 3663–3667 (2002).
[CrossRef]

Qi, G.

N.  Liao, M.  Gong, D.  Xu, G.  Qi, K.  Zhang, “Single-beam two-photon three-dimensional optical storage in a pyrryl-substituted fulgide photochromic material,” Chin. Sci. Bull. 46, 1856–1859 (2001).
[CrossRef]

Rochon, P.

P.  Rochon, J.  Gosselin, A.  Natansohn, S.  Xie, “Optically induced and erased birefringence and dichromism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

Sasabe, H.

Y.  Okada-Shudo, I.  Yamaguchi, H.  Tomioka, H.  Sasabe, “Real-time image processing using polarization discrimination of bacteriorhodopsin,” Synth. Met. 81, 147–149 (1996).
[CrossRef]

Stepanchikov, D. A.

E. Y.  Korchemskaya, D. A.  Stepanchikov, T. V.  Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mat. 14, 185–190 (2000).
[CrossRef]

E. Y.  Korchemskaya, D. A.  Stepanchikov, “Real-time selective image processing using photoinduced anisotropy of bacteriorhodopsin polymer films,” Proc. SPIE 3486, 156–164 (1998).
[CrossRef]

Sugiyama, K.

F.  Matsui, H.  Taniguchi, Y.  Yokoyama, K.  Sugiyama, Y.  Kurita, “Application of photochromic 5-dimethylaminoindolylfulgide to photo-mode erasable opticel media with non-destructive readout ability based on wavelength dependence of bleaching quantum yield,” Chem. Lett. 10, 1869–1872 (1994).
[CrossRef]

Taniguchi, H.

F.  Matsui, H.  Taniguchi, Y.  Yokoyama, K.  Sugiyama, Y.  Kurita, “Application of photochromic 5-dimethylaminoindolylfulgide to photo-mode erasable opticel media with non-destructive readout ability based on wavelength dependence of bleaching quantum yield,” Chem. Lett. 10, 1869–1872 (1994).
[CrossRef]

Tomioka, H.

Y.  Okada-Shudo, I.  Yamaguchi, H.  Tomioka, H.  Sasabe, “Real-time image processing using polarization discrimination of bacteriorhodopsin,” Synth. Met. 81, 147–149 (1996).
[CrossRef]

Wang, C.

M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
[CrossRef]

Wang, Y.

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
[CrossRef]

Xie, S.

P.  Rochon, J.  Gosselin, A.  Natansohn, S.  Xie, “Optically induced and erased birefringence and dichromism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

Xu, D.

N.  Liao, M.  Gong, D.  Xu, G.  Qi, K.  Zhang, “Single-beam two-photon three-dimensional optical storage in a pyrryl-substituted fulgide photochromic material,” Chin. Sci. Bull. 46, 1856–1859 (2001).
[CrossRef]

Yamaguchi, I.

Y.  Okada-Shudo, I.  Yamaguchi, H.  Tomioka, H.  Sasabe, “Real-time image processing using polarization discrimination of bacteriorhodopsin,” Synth. Met. 81, 147–149 (1996).
[CrossRef]

Yan, Q.

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

Yao, B.

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
[CrossRef]

Ye, Q.

L.  Yu, Y.  Ming, M.  Fan, H.  Yu, Q.  Ye, “Synthesis and applications of photochromic fulgides in optical storage,” Sci. in Chin. (Ser. B) 25, 799–803 (1995).

Yokoyama, Y.

Y.  Yokoyama, “Fulgide for memories and switches,” Chem. Rev. 100, 1717–1739 (2000).
[CrossRef]

F.  Matsui, H.  Taniguchi, Y.  Yokoyama, K.  Sugiyama, Y.  Kurita, “Application of photochromic 5-dimethylaminoindolylfulgide to photo-mode erasable opticel media with non-destructive readout ability based on wavelength dependence of bleaching quantum yield,” Chem. Lett. 10, 1869–1872 (1994).
[CrossRef]

Yu, H.

L.  Yu, Y.  Ming, M.  Fan, H.  Yu, Q.  Ye, “Synthesis and applications of photochromic fulgides in optical storage,” Sci. in Chin. (Ser. B) 25, 799–803 (1995).

Yu, L.

L.  Yu, Y.  Ming, M.  Fan, H.  Yu, Q.  Ye, “Synthesis and applications of photochromic fulgides in optical storage,” Sci. in Chin. (Ser. B) 25, 799–803 (1995).

Zhang, K.

N.  Liao, M.  Gong, D.  Xu, G.  Qi, K.  Zhang, “Single-beam two-photon three-dimensional optical storage in a pyrryl-substituted fulgide photochromic material,” Chin. Sci. Bull. 46, 1856–1859 (2001).
[CrossRef]

Zheng, Y.

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

Acta Phys. Sin. (1)

Y.  Wang, B.  Yao, Y.  Chen, M.  Fan, Y.  Zheng, N.  Menke, M.  Lei, G.  Chen, Y.  Han, Q.  Yan, X.  Meng, “Polarization holographic image storage with indolylfulgimide,” Acta Phys. Sin. 53, 66–69 (2004).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P.  Rochon, J.  Gosselin, A.  Natansohn, S.  Xie, “Optically induced and erased birefringence and dichromism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

Chem. Lett. (1)

F.  Matsui, H.  Taniguchi, Y.  Yokoyama, K.  Sugiyama, Y.  Kurita, “Application of photochromic 5-dimethylaminoindolylfulgide to photo-mode erasable opticel media with non-destructive readout ability based on wavelength dependence of bleaching quantum yield,” Chem. Lett. 10, 1869–1872 (1994).
[CrossRef]

Chem. Mater. (1)

K. D.  Belfield, Y.  Liu, R. A.  Negres, M.  Fan, G.  Pan, D. J.  Hagan, F. E.  Henandez, “Two-Photon photochromism of an organic material for holographic recording,” Chem. Mater. 14, 3663–3667 (2002).
[CrossRef]

Chem. Rev. (1)

Y.  Yokoyama, “Fulgide for memories and switches,” Chem. Rev. 100, 1717–1739 (2000).
[CrossRef]

Chin. Sci. Bull. (1)

N.  Liao, M.  Gong, D.  Xu, G.  Qi, K.  Zhang, “Single-beam two-photon three-dimensional optical storage in a pyrryl-substituted fulgide photochromic material,” Chin. Sci. Bull. 46, 1856–1859 (2001).
[CrossRef]

Opt. Comm. (1)

J. M. C.  Jonathan, M.  May, “Anisotropy induced in a silver-chloride emulsion by two incoherent and perpendicular light vibrations,” Opt. Comm. 28, 295–299 (1979).
[CrossRef]

Opt. Mat. (1)

E. Y.  Korchemskaya, D. A.  Stepanchikov, T. V.  Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mat. 14, 185–190 (2000).
[CrossRef]

Proc. SPIE (2)

M.  Lei, B.  Yao, Y.  Chen, Y.  Han, C.  Wang, Y.  Wang, N.  Menke, G.  Chen, M.  Fan, “Experimental study of optical storage characteristics of photochromic material—pyrrylfulgide,” Proc. SPIE 5060, 28–31 (2003).
[CrossRef]

E. Y.  Korchemskaya, D. A.  Stepanchikov, “Real-time selective image processing using photoinduced anisotropy of bacteriorhodopsin polymer films,” Proc. SPIE 3486, 156–164 (1998).
[CrossRef]

Sci. in Chin. (Ser. B) (1)

L.  Yu, Y.  Ming, M.  Fan, H.  Yu, Q.  Ye, “Synthesis and applications of photochromic fulgides in optical storage,” Sci. in Chin. (Ser. B) 25, 799–803 (1995).

Synth. Met. (1)

Y.  Okada-Shudo, I.  Yamaguchi, H.  Tomioka, H.  Sasabe, “Real-time image processing using polarization discrimination of bacteriorhodopsin,” Synth. Met. 81, 147–149 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transmittance (at 633 nm) versus excitation (at 650 nm) time of the pyrrylfulgide/PMMA film for different excitation polarizations. T : excitation and detection beams have same polarizations; T⊥: excitation and detection beams have orthogonal polarizations.

Fig. 2.
Fig. 2.

Transmittance (at 633 nm) of the P-fulgide-A system versus the excitation (at 650 nm) time. The cross polarization angle between the excitation beam and the polarizer P is 450.

Fig. 3.
Fig. 3.

Experimental setup for writing and reading polarization spot patterns

Fig. 4.
Fig. 4.

Polarizations of the light spots recorded on the film

Fig. 5.
Fig. 5.

Readout patterns from the film without polarizers or by applying two orthogonal polarizers (P and A) at different polarization angles. (a) without polarizers; (b) the polarization of P is 0° or 90° ; (c) the polarization of P is 45° or 135°.

Metrics