Abstract

Based on fiber Bragg gratings (FBGs) and high nonlinear photonic crystal fiber (HN-PCF), a novel dual-wavelength erbium-doped fiber (EDF) laser is proposed and demonstrated. Experimental results show that, owing to the contributions of two degenerate four-wave mixings in the HN-PCF, the proposed fiber laser is quite stable and two output signals are uniform at room temperature. With adjustment of the attenuator, our fiber laser can selectively realize one wavelength lasing.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. C.  Peng, H. Y.  Tseng, S.  Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photon.Technol. Lett. 15, 661–663 (2003).
    [CrossRef]
  2. L.  Talaverano, S.  Abad, S.  Jarabo, et al., “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” J. Lightwave Technol. 19, 553–558 (2001).
    [CrossRef]
  3. A.  Bellemare, M.  Karasek, M.  Rochette, et al., “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
    [CrossRef]
  4. J.  Nilsson, Y. W.  Lee, S. J.  Kim, “Robust dual-wavelength ring-laser based on two spectrally different erbium-doped Fiber amplifiers,” IEEE Photon.Technol. Lett. 8, 1630–1632 (1996).
    [CrossRef]
  5. Y. G.  Liu, X.H.  Feng, S. Z.  Yuan, et al., “Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings,” Opt. Express 12, 2056–2061 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2056
    [CrossRef] [PubMed]
  6. Y. Z.  Xu, H. Y.  Tam, W. C.  Du, et al., “Tunable dual-wavelength-switching fiber grating laser,” IEEE Photon.Technol. Lett. 10, 334–336 (1998).
    [CrossRef]
  7. J.  Yao, J. P.  Yao, Z. C.  Deng, “Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise,” Opt. Express 12, 4529–4534 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4529
    [CrossRef] [PubMed]
  8. S.  Yamashita, K.  Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32, 1298–1299 (1996).
    [CrossRef]
  9. A.  Bellemare, M.  Karasek, C.  Riviere, et al. “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electronics 7, 22–29, (2001).
    [CrossRef]
  10. J.  Canning, N.  Groothoff, et al. “All-fibre photonic crystal distributed Bragg reflector (PC-DBR) fibre laser,” Opt. Express 11, 1995–2000 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1995
    [CrossRef] [PubMed]
  11. S. O.  Konorov, A. B.  Fedotov, A. M.  Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 28, 1448–1450 (2003).
    [CrossRef] [PubMed]
  12. G. P.  Agrawal, Application of Nonlinear Fiber Optics, San Diego: Academic Press, 2001.
  13. N. J. C.  Libatique, L.  Wang, R. K.  Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Opt. Express 10, 1503–1507 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1503
    [PubMed]

2004

2003

2002

2001

A.  Bellemare, M.  Karasek, C.  Riviere, et al. “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electronics 7, 22–29, (2001).
[CrossRef]

L.  Talaverano, S.  Abad, S.  Jarabo, et al., “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” J. Lightwave Technol. 19, 553–558 (2001).
[CrossRef]

2000

1998

Y. Z.  Xu, H. Y.  Tam, W. C.  Du, et al., “Tunable dual-wavelength-switching fiber grating laser,” IEEE Photon.Technol. Lett. 10, 334–336 (1998).
[CrossRef]

1996

S.  Yamashita, K.  Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32, 1298–1299 (1996).
[CrossRef]

J.  Nilsson, Y. W.  Lee, S. J.  Kim, “Robust dual-wavelength ring-laser based on two spectrally different erbium-doped Fiber amplifiers,” IEEE Photon.Technol. Lett. 8, 1630–1632 (1996).
[CrossRef]

Abad, S.

Agrawal, G. P.

G. P.  Agrawal, Application of Nonlinear Fiber Optics, San Diego: Academic Press, 2001.

Bellemare, A.

A.  Bellemare, M.  Karasek, C.  Riviere, et al. “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electronics 7, 22–29, (2001).
[CrossRef]

A.  Bellemare, M.  Karasek, M.  Rochette, et al., “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
[CrossRef]

Canning, J.

Chi, S.

P. C.  Peng, H. Y.  Tseng, S.  Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photon.Technol. Lett. 15, 661–663 (2003).
[CrossRef]

Deng, Z. C.

Du, W. C.

Y. Z.  Xu, H. Y.  Tam, W. C.  Du, et al., “Tunable dual-wavelength-switching fiber grating laser,” IEEE Photon.Technol. Lett. 10, 334–336 (1998).
[CrossRef]

Fedotov, A. B.

Feng, X.H.

Groothoff, N.

Hotate, K.

S.  Yamashita, K.  Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32, 1298–1299 (1996).
[CrossRef]

Jain, R. K.

Jarabo, S.

Karasek, M.

A.  Bellemare, M.  Karasek, C.  Riviere, et al. “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electronics 7, 22–29, (2001).
[CrossRef]

A.  Bellemare, M.  Karasek, M.  Rochette, et al., “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
[CrossRef]

Kim, S. J.

J.  Nilsson, Y. W.  Lee, S. J.  Kim, “Robust dual-wavelength ring-laser based on two spectrally different erbium-doped Fiber amplifiers,” IEEE Photon.Technol. Lett. 8, 1630–1632 (1996).
[CrossRef]

Konorov, S. O.

Lee, Y. W.

J.  Nilsson, Y. W.  Lee, S. J.  Kim, “Robust dual-wavelength ring-laser based on two spectrally different erbium-doped Fiber amplifiers,” IEEE Photon.Technol. Lett. 8, 1630–1632 (1996).
[CrossRef]

Libatique, N. J. C.

Liu, Y. G.

Nilsson, J.

J.  Nilsson, Y. W.  Lee, S. J.  Kim, “Robust dual-wavelength ring-laser based on two spectrally different erbium-doped Fiber amplifiers,” IEEE Photon.Technol. Lett. 8, 1630–1632 (1996).
[CrossRef]

Peng, P. C.

P. C.  Peng, H. Y.  Tseng, S.  Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photon.Technol. Lett. 15, 661–663 (2003).
[CrossRef]

Riviere, C.

A.  Bellemare, M.  Karasek, C.  Riviere, et al. “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electronics 7, 22–29, (2001).
[CrossRef]

Rochette, M.

Talaverano, L.

Tam, H. Y.

Y. Z.  Xu, H. Y.  Tam, W. C.  Du, et al., “Tunable dual-wavelength-switching fiber grating laser,” IEEE Photon.Technol. Lett. 10, 334–336 (1998).
[CrossRef]

Tseng, H. Y.

P. C.  Peng, H. Y.  Tseng, S.  Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photon.Technol. Lett. 15, 661–663 (2003).
[CrossRef]

Wang, L.

Xu, Y. Z.

Y. Z.  Xu, H. Y.  Tam, W. C.  Du, et al., “Tunable dual-wavelength-switching fiber grating laser,” IEEE Photon.Technol. Lett. 10, 334–336 (1998).
[CrossRef]

Yamashita, S.

S.  Yamashita, K.  Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32, 1298–1299 (1996).
[CrossRef]

Yao, J.

Yao, J. P.

Yuan, S. Z.

Zheltikov, A. M.

Electron. Lett.

S.  Yamashita, K.  Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32, 1298–1299 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electronics

A.  Bellemare, M.  Karasek, C.  Riviere, et al. “A broadly tunable erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electronics 7, 22–29, (2001).
[CrossRef]

IEEE Photon.Technol. Lett.

P. C.  Peng, H. Y.  Tseng, S.  Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photon.Technol. Lett. 15, 661–663 (2003).
[CrossRef]

J.  Nilsson, Y. W.  Lee, S. J.  Kim, “Robust dual-wavelength ring-laser based on two spectrally different erbium-doped Fiber amplifiers,” IEEE Photon.Technol. Lett. 8, 1630–1632 (1996).
[CrossRef]

Y. Z.  Xu, H. Y.  Tam, W. C.  Du, et al., “Tunable dual-wavelength-switching fiber grating laser,” IEEE Photon.Technol. Lett. 10, 334–336 (1998).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

G. P.  Agrawal, Application of Nonlinear Fiber Optics, San Diego: Academic Press, 2001.

Supplementary Material (1)

» Media 1: AVI (643 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup of the dual-wavelength-switching EDF laser (PC: polarization controller, VA: variable attenuator, PCF: photonic crystal fiber, FBG: fiber Bragg gratings). (b) The transmission spectra of two FBGs.

Fig. 2.
Fig. 2.

Normalized ASE reflection spectra of two FBGs at the case that the attenuation of VA is equal to zero.

Fig. 3.
Fig. 3.

Output spectra for different VA value at pump current I=55 mA at the case that (a) the attenuation of VA is equal to zero, and (b) the reflection power from FBG1 is less than that from FBG2.

Fig. 4.
Fig. 4.

Output spectra at pump current I=240 mA. Two inserted figures denote the magnification of waves ω 0 and ω 3 created by two degenerate-FWMs. ω 0=2·ω 1-ω 2 and ω 3=2·ω 2-ω 1.

Fig. 5.
Fig. 5.

(658 KB) Movie showing the procedure of dual-wavelength EDF laser in terms of pump current I.

Fig. 6.
Fig. 6.

Power difference ΔP of two signals ω 1 and ω 2 in terms of the pump current I. The inset is zoomed in the red dashed-dot frame.

Fig. 7.
Fig. 7.

Fluctuation of power with time at I=170 mA.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ P 1 = α ( ω 1 ω 2 P 2 2 P 1 )
Δ P 2 = α ( ω 2 ω 1 P 1 2 P 2 )
Δ ( P 2 P 1 ) = 1 P 1 2 ( P 1 Δ P 2 P 2 Δ P 1 ) = α ω 2 ω 1 [ 1 ( ω 1 P 2 ω 2 P 1 ) 2 ] .
[ β ( ω + 2 π Δ ν L ) β ( ω ) ] L R = 2 π ,

Metrics