Abstract

A new bifocal optical system used for distant object tracking is proposed. This system combines a birefringent element with a conventional glass lens so that the spot image size and its variation with the axial distance can be controlled according to the requirement of a distant object tracker. The lens design for the tracking application is discussed and an example is given. The new lens system provides a more uniform spot image size and an extended focal depth compared to a conventional lens with one focus.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Carl Christian Liebe, “Accuracy performance of star tracking-a tutorial,” IEEE Transactions on Aerospace and Electronic Systems 38, 587–599 (2002).
    [Crossref]
  2. G. Borghi, D. Procopio, M. Magnani, S. Pieri, and S. Becucci, “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
    [Crossref]
  3. Giancarlo Rufino and Domenico Accardo, “Enhancement of the centroiding algorithm for star tracker measure refinement,” Acta Astronautica 53, 135–147 (2003).
    [Crossref]
  4. Carl Christian Liebe, “Star trackers for attitude determination,” IEEE AES Systems Magazines, 10–16 (1995).
    [Crossref]
  5. K. Noguchi, K. Sato, R. Kasikawa, N. Ogura, K. Ninomiya, T. Hasimoto, and E. Hirokawa, “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
    [Crossref]
  6. J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
    [Crossref]
  7. E. R. Dowski and W. T. Catchy, “Extended depth of field through wave-front coding,” App. Opt. 34, 1859–1866 (1995).
    [Crossref]
  8. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875–877 (2001).
    [Crossref]
  9. S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28, 771–773 (2003).
    [Crossref] [PubMed]
  10. J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kolodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17, 7–9 (1992).
    [Crossref] [PubMed]
  11. Jorge Ojeda-Castaneda and L. R. Berriel-Valdos, “Zone plate for arbitrarily high focal depth,” App. Opt. 29, 994–997 (1990).
    [Crossref]
  12. Arthur Cox, A system of optical design (The Focal Press, London and New York1964).
  13. S. Sanyal and A. Ghosh, “High focal depth with a quasi-bifocus birefringent lens,” App. Opt. 39, 2321–2325 (2000).
    [Crossref]

2003 (2)

Giancarlo Rufino and Domenico Accardo, “Enhancement of the centroiding algorithm for star tracker measure refinement,” Acta Astronautica 53, 135–147 (2003).
[Crossref]

S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28, 771–773 (2003).
[Crossref] [PubMed]

2002 (1)

Carl Christian Liebe, “Accuracy performance of star tracking-a tutorial,” IEEE Transactions on Aerospace and Electronic Systems 38, 587–599 (2002).
[Crossref]

2001 (1)

2000 (1)

S. Sanyal and A. Ghosh, “High focal depth with a quasi-bifocus birefringent lens,” App. Opt. 39, 2321–2325 (2000).
[Crossref]

1996 (1)

K. Noguchi, K. Sato, R. Kasikawa, N. Ogura, K. Ninomiya, T. Hasimoto, and E. Hirokawa, “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

1995 (2)

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

E. R. Dowski and W. T. Catchy, “Extended depth of field through wave-front coding,” App. Opt. 34, 1859–1866 (1995).
[Crossref]

1994 (1)

G. Borghi, D. Procopio, M. Magnani, S. Pieri, and S. Becucci, “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

1992 (1)

1990 (1)

Jorge Ojeda-Castaneda and L. R. Berriel-Valdos, “Zone plate for arbitrarily high focal depth,” App. Opt. 29, 994–997 (1990).
[Crossref]

Accardo, Domenico

Giancarlo Rufino and Domenico Accardo, “Enhancement of the centroiding algorithm for star tracker measure refinement,” Acta Astronautica 53, 135–147 (2003).
[Crossref]

Bará, S.

Becucci, S.

G. Borghi, D. Procopio, M. Magnani, S. Pieri, and S. Becucci, “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

Berriel-Valdos, L. R.

Jorge Ojeda-Castaneda and L. R. Berriel-Valdos, “Zone plate for arbitrarily high focal depth,” App. Opt. 29, 994–997 (1990).
[Crossref]

Borghi, G.

G. Borghi, D. Procopio, M. Magnani, S. Pieri, and S. Becucci, “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

Catchy, W. T.

E. R. Dowski and W. T. Catchy, “Extended depth of field through wave-front coding,” App. Opt. 34, 1859–1866 (1995).
[Crossref]

Chi, W.

Christian Liebe, Carl

Carl Christian Liebe, “Accuracy performance of star tracking-a tutorial,” IEEE Transactions on Aerospace and Electronic Systems 38, 587–599 (2002).
[Crossref]

Carl Christian Liebe, “Star trackers for attitude determination,” IEEE AES Systems Magazines, 10–16 (1995).
[Crossref]

Cox, Arthur

Arthur Cox, A system of optical design (The Focal Press, London and New York1964).

Dowski, E. R.

E. R. Dowski and W. T. Catchy, “Extended depth of field through wave-front coding,” App. Opt. 34, 1859–1866 (1995).
[Crossref]

George, N.

Ghosh, A.

S. Sanyal and A. Ghosh, “High focal depth with a quasi-bifocus birefringent lens,” App. Opt. 39, 2321–2325 (2000).
[Crossref]

Harvey, A. R.

Hasimoto, T.

K. Noguchi, K. Sato, R. Kasikawa, N. Ogura, K. Ninomiya, T. Hasimoto, and E. Hirokawa, “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

Hills, R. F.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

Hirokawa, E.

K. Noguchi, K. Sato, R. Kasikawa, N. Ogura, K. Ninomiya, T. Hasimoto, and E. Hirokawa, “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

Jaroszewicz, Z.

Kasikawa, R.

K. Noguchi, K. Sato, R. Kasikawa, N. Ogura, K. Ninomiya, T. Hasimoto, and E. Hirokawa, “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

Kolodziejczyk, A.

Kordas, J. F.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

Ledebuhr, A. G.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

Lewis, I. T.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

Magnani, M.

G. Borghi, D. Procopio, M. Magnani, S. Pieri, and S. Becucci, “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

Mezouari, S.

Nielsen, D. P.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

Ninomiya, K.

K. Noguchi, K. Sato, R. Kasikawa, N. Ogura, K. Ninomiya, T. Hasimoto, and E. Hirokawa, “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

Noguchi, K.

K. Noguchi, K. Sato, R. Kasikawa, N. Ogura, K. Ninomiya, T. Hasimoto, and E. Hirokawa, “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

Ogura, N.

K. Noguchi, K. Sato, R. Kasikawa, N. Ogura, K. Ninomiya, T. Hasimoto, and E. Hirokawa, “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

Ojeda-Castaneda, Jorge

Jorge Ojeda-Castaneda and L. R. Berriel-Valdos, “Zone plate for arbitrarily high focal depth,” App. Opt. 29, 994–997 (1990).
[Crossref]

Park, H.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

Pieri, S.

G. Borghi, D. Procopio, M. Magnani, S. Pieri, and S. Becucci, “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

Pleasance, L. D.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

Priest, R. E.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

Procopio, D.

G. Borghi, D. Procopio, M. Magnani, S. Pieri, and S. Becucci, “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

Rufino, Giancarlo

Giancarlo Rufino and Domenico Accardo, “Enhancement of the centroiding algorithm for star tracker measure refinement,” Acta Astronautica 53, 135–147 (2003).
[Crossref]

Sanyal, S.

S. Sanyal and A. Ghosh, “High focal depth with a quasi-bifocus birefringent lens,” App. Opt. 39, 2321–2325 (2000).
[Crossref]

Sato, K.

K. Noguchi, K. Sato, R. Kasikawa, N. Ogura, K. Ninomiya, T. Hasimoto, and E. Hirokawa, “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

Shannon, M. J.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

Sochacki, J.

Wilson, B. A.

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

Acta Astronautica (1)

Giancarlo Rufino and Domenico Accardo, “Enhancement of the centroiding algorithm for star tracker measure refinement,” Acta Astronautica 53, 135–147 (2003).
[Crossref]

App. Opt. (3)

E. R. Dowski and W. T. Catchy, “Extended depth of field through wave-front coding,” App. Opt. 34, 1859–1866 (1995).
[Crossref]

Jorge Ojeda-Castaneda and L. R. Berriel-Valdos, “Zone plate for arbitrarily high focal depth,” App. Opt. 29, 994–997 (1990).
[Crossref]

S. Sanyal and A. Ghosh, “High focal depth with a quasi-bifocus birefringent lens,” App. Opt. 39, 2321–2325 (2000).
[Crossref]

IEEE Transactions on Aerospace and Electronic Systems (1)

Carl Christian Liebe, “Accuracy performance of star tracking-a tutorial,” IEEE Transactions on Aerospace and Electronic Systems 38, 587–599 (2002).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (2)

G. Borghi, D. Procopio, M. Magnani, S. Pieri, and S. Becucci, “Stellar reference unit for CASSINI mission,” Proc. SPIE 2210, 150–161 (1994).
[Crossref]

K. Noguchi, K. Sato, R. Kasikawa, N. Ogura, K. Ninomiya, T. Hasimoto, and E. Hirokawa, “CCD star tracker for attitude determination and control of satellite for space VLBI mission,” Proc. SPIE 2810, 190–200 (1996).
[Crossref]

SPIE (1)

J. F. Kordas, I. T. Lewis, B. A. Wilson, D. P. Nielsen, H. Park, R. E. Priest, R. F. Hills, M. J. Shannon, A. G. Ledebuhr, and L. D. Pleasance, “Star tracker stellar compass for the Clementine mission,” SPIE 2466, 70–83 (1995).
[Crossref]

Other (2)

Arthur Cox, A system of optical design (The Focal Press, London and New York1964).

Carl Christian Liebe, “Star trackers for attitude determination,” IEEE AES Systems Magazines, 10–16 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of a lens having two foci

Fig. 2.
Fig. 2.

Spot size versus the value of Δs

Fig. 3.
Fig. 3.

Spot size versus the axial distance

Fig. 4.
Fig. 4.

Schematic of the combination of a bifocal lens

Fig. 5.
Fig. 5.

Configuration of an optical system comprising a birefringent lens

Fig. 6.
Fig. 6.

Spot size for e rays oe-13-1-136-i001.jpg

Fig. 7.
Fig. 7.

Spot size of a bifocal lens system oe-13-1-136-i002.jpg

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

D H ( Ω ) = D 0 ( Ω ) D g ( Ω ) .
I ( r ) = F 1 [ D 0 ( Ω ) D g ( Ω ) ] = I 0 ( r ) * I g ( r ) ,
I 0 ( r ) = [ 2 · J 1 ( λ · F n · r ) λ · F n · r ] 2 ,
I ( r , Δ s , δ z ) = I 0 ( r ) * I g 1 ( r ) + I 0 ( r ) * I g 2 ( r ) .
I g 1 ( r ) = { 1 π [ 2 F n ( Δ s 2 ) + δ z ] 2 r ( Δ s 2 ) + δ z 2 F n 0 others ,
and I g 2 ( r ) = { 1 π [ 2 F n ( Δ s 2 ) δ z ] 2 r ( Δ s 2 ) + δ z 2 F n 0 others .
I ( r , Δ s , δ z ) = 0 a 1 ( 2 J 1 [ λ . F n . ( r τ ) ] λ . F n . ( r τ ) ) 2 d τ + 0 a 2 ( 2 J 1 [ λ . F n . ( r τ ) ] λ . F n . ( r τ ) ) 2 d τ ,
where a 1 = [ ( Δ s 2 ) + δ z ] 2 F n ,
a 2 = [ ( Δ s 2 ) δ z ] 2 F n .
RED ( c , Δ s , δ z ) = 0 c 2 π · I ( r , Δ s , δ z ) · r · dr 0 2 π · I ( r , Δ s , 0 ) · r · dr .
f 1 o = r 1 ( n o 1 ) ,
f 1 e = r 1 ( n e 1 ) .
Δ d 1 = f 1 o f 1 e .
Δ d 1 = ( n e n o ) · r 1 ( n o 1 ) · ( n e 1 ) .
Δ d = ( x 2 x 2 ) · Δ d 1 ,
f 2 2 = x 2 · x 2 ,
1 f = 1 f 1 e ' + 1 f 2 ( a + f 2 ) f 1 e f 2 .
a = f 1 e x 2 .
Δ d = f 2 ( n e 1 ) ( n e n o ) ( n o 1 ) · r 1 .

Metrics