Abstract

We present the redesign and improved performance of the laser terahertz emission microscope (LTEM), which is a potential tool for locating electrical failures in integrated circuits. The LTEM produces an image of the THz waves emitted when the circuit is irradiated by a femtosecond laser; the amplitude of the THz emission is proportional to the local electric field. By redesigning the optical setup and improving the spatial resolution of the system to below 3 µm, we could extend its application to examining of large-scale integration circuits. As example we show the THz emission pattern of the electric field in an 8-bit microprocessor chip under bias voltage.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A.  Knauss, A. B.  Cawthome, N.  Lettsome, S.  Kellly, S.  Chatraphorn, E. F.  Fleet, F. C.  Wellstood, W. E.  Vanderlinde, “Scanning SQUID microscopy for current imaging,” Microelectron. Reliab. 41, 1211–1229 (2001).
    [CrossRef]
  2. K.  Nikawa, “Laser-SQUID microscopy as a novel tool for inspection, monitoring and analysis of LSI chip defects: Nondestructive and non-electrical contact technique,” IEICE Trans. Electron. E85-C, 746–751 (2002).
  3. K.  Nikawa, “Laser-SQUID microscope for LSI chip defect analysis,” in Vortex Electronics and SQUIDs , T.  Kobayashi, H.  Hirakawa, M.  Tonouchi, eds. (Springer, Berlin, 2003), 224–232.
  4. K.  Nikawa, S.  Inoue, “LSI failure analysis using focused laser beam heating,” Microelectron. Reliab. 37, 1841–1847 (1997).
    [CrossRef]
  5. T.  Beauchene, D.  Lewis, F.  Beaudoin, V.  Pouget, P.  Perdu, P.  Fourillat, Y.  Danto, “A physical approach on SCOBIC investigation in VLSI,” Microelectron. Reliab., 43, 173–177 (2003).
    [CrossRef]
  6. T.  Kiwa, M.  Tonouchi, M.  Yamashita, K.  Kawase, “Laser terahertz-emission microscope for inspecting electrical failures in integrated circuits,” Opt. Lett., 28, 2058–2060 (2003).
    [CrossRef] [PubMed]
  7. S.  Shikii, T.  Kondo, M.  Yamashita, M.  Tonouchi, M.  Hangyo, “Observation of supercurrent distribution in YBa2Cu3O7 thin films using THz radiation excited with femtosecond laser pulses,” Appl. Phys. Lett. 74, 1317–1319 (1999).
    [CrossRef]
  8. M.  Tonouchi, M.  Yamashita, M.  Hnagyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7 thin film strips,” J. Appl. Phys. 87, 7366 (2000).
    [CrossRef]
  9. D. H.  Auston, K. P.  Cheung, P. R.  Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
    [CrossRef]
  10. Y.  Jin, X. F.  Ma, G. A.  Wagoner, M.  Alexander, X. C.  Zhang, “Anomalous optically rectification from metal/GaAs interfaces,” Appl. Phys. Lett. 65, 682–684 (1994).
    [CrossRef]
  11. X. C.  Zhang, B. B.  Hu, J. T.  Darrow, D. H.  Auston, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
    [CrossRef]
  12. I.  Brener, D.  Dykarr, A.  Frommer, L. N.  Pfeiffer, J.  Lopata, J.  Wynn, K.  West, M. C.  Nuss, “Terahertz emission from electric field singularities in biased semiconductors,” Opt. Lett. 21, 1924–1926 (1996).
    [CrossRef] [PubMed]
  13. M. M.  Gitin, F. W.  Wise, G.  Arjavalingam, Y.  Pastol, R. C.  Compton, “Broad-band characterization of millimeter-wave log-periodic antennas by photoconductive sampling,” IEEE Trans. on Antennas and Propagation 42, 335–339 (1994).
    [CrossRef]

2003 (2)

T.  Beauchene, D.  Lewis, F.  Beaudoin, V.  Pouget, P.  Perdu, P.  Fourillat, Y.  Danto, “A physical approach on SCOBIC investigation in VLSI,” Microelectron. Reliab., 43, 173–177 (2003).
[CrossRef]

T.  Kiwa, M.  Tonouchi, M.  Yamashita, K.  Kawase, “Laser terahertz-emission microscope for inspecting electrical failures in integrated circuits,” Opt. Lett., 28, 2058–2060 (2003).
[CrossRef] [PubMed]

2002 (1)

K.  Nikawa, “Laser-SQUID microscopy as a novel tool for inspection, monitoring and analysis of LSI chip defects: Nondestructive and non-electrical contact technique,” IEICE Trans. Electron. E85-C, 746–751 (2002).

2001 (1)

L. A.  Knauss, A. B.  Cawthome, N.  Lettsome, S.  Kellly, S.  Chatraphorn, E. F.  Fleet, F. C.  Wellstood, W. E.  Vanderlinde, “Scanning SQUID microscopy for current imaging,” Microelectron. Reliab. 41, 1211–1229 (2001).
[CrossRef]

2000 (1)

M.  Tonouchi, M.  Yamashita, M.  Hnagyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7 thin film strips,” J. Appl. Phys. 87, 7366 (2000).
[CrossRef]

1999 (1)

S.  Shikii, T.  Kondo, M.  Yamashita, M.  Tonouchi, M.  Hangyo, “Observation of supercurrent distribution in YBa2Cu3O7 thin films using THz radiation excited with femtosecond laser pulses,” Appl. Phys. Lett. 74, 1317–1319 (1999).
[CrossRef]

1997 (1)

K.  Nikawa, S.  Inoue, “LSI failure analysis using focused laser beam heating,” Microelectron. Reliab. 37, 1841–1847 (1997).
[CrossRef]

1996 (1)

1994 (2)

M. M.  Gitin, F. W.  Wise, G.  Arjavalingam, Y.  Pastol, R. C.  Compton, “Broad-band characterization of millimeter-wave log-periodic antennas by photoconductive sampling,” IEEE Trans. on Antennas and Propagation 42, 335–339 (1994).
[CrossRef]

Y.  Jin, X. F.  Ma, G. A.  Wagoner, M.  Alexander, X. C.  Zhang, “Anomalous optically rectification from metal/GaAs interfaces,” Appl. Phys. Lett. 65, 682–684 (1994).
[CrossRef]

1990 (1)

X. C.  Zhang, B. B.  Hu, J. T.  Darrow, D. H.  Auston, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[CrossRef]

1984 (1)

D. H.  Auston, K. P.  Cheung, P. R.  Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Alexander, M.

Y.  Jin, X. F.  Ma, G. A.  Wagoner, M.  Alexander, X. C.  Zhang, “Anomalous optically rectification from metal/GaAs interfaces,” Appl. Phys. Lett. 65, 682–684 (1994).
[CrossRef]

Arjavalingam, G.

M. M.  Gitin, F. W.  Wise, G.  Arjavalingam, Y.  Pastol, R. C.  Compton, “Broad-band characterization of millimeter-wave log-periodic antennas by photoconductive sampling,” IEEE Trans. on Antennas and Propagation 42, 335–339 (1994).
[CrossRef]

Auston, D. H.

X. C.  Zhang, B. B.  Hu, J. T.  Darrow, D. H.  Auston, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[CrossRef]

D. H.  Auston, K. P.  Cheung, P. R.  Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Beauchene, T.

T.  Beauchene, D.  Lewis, F.  Beaudoin, V.  Pouget, P.  Perdu, P.  Fourillat, Y.  Danto, “A physical approach on SCOBIC investigation in VLSI,” Microelectron. Reliab., 43, 173–177 (2003).
[CrossRef]

Beaudoin, F.

T.  Beauchene, D.  Lewis, F.  Beaudoin, V.  Pouget, P.  Perdu, P.  Fourillat, Y.  Danto, “A physical approach on SCOBIC investigation in VLSI,” Microelectron. Reliab., 43, 173–177 (2003).
[CrossRef]

Brener, I.

Cawthome, A. B.

L. A.  Knauss, A. B.  Cawthome, N.  Lettsome, S.  Kellly, S.  Chatraphorn, E. F.  Fleet, F. C.  Wellstood, W. E.  Vanderlinde, “Scanning SQUID microscopy for current imaging,” Microelectron. Reliab. 41, 1211–1229 (2001).
[CrossRef]

Chatraphorn, S.

L. A.  Knauss, A. B.  Cawthome, N.  Lettsome, S.  Kellly, S.  Chatraphorn, E. F.  Fleet, F. C.  Wellstood, W. E.  Vanderlinde, “Scanning SQUID microscopy for current imaging,” Microelectron. Reliab. 41, 1211–1229 (2001).
[CrossRef]

Cheung, K. P.

D. H.  Auston, K. P.  Cheung, P. R.  Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Compton, R. C.

M. M.  Gitin, F. W.  Wise, G.  Arjavalingam, Y.  Pastol, R. C.  Compton, “Broad-band characterization of millimeter-wave log-periodic antennas by photoconductive sampling,” IEEE Trans. on Antennas and Propagation 42, 335–339 (1994).
[CrossRef]

Danto, Y.

T.  Beauchene, D.  Lewis, F.  Beaudoin, V.  Pouget, P.  Perdu, P.  Fourillat, Y.  Danto, “A physical approach on SCOBIC investigation in VLSI,” Microelectron. Reliab., 43, 173–177 (2003).
[CrossRef]

Darrow, J. T.

X. C.  Zhang, B. B.  Hu, J. T.  Darrow, D. H.  Auston, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[CrossRef]

Dykarr, D.

Fleet, E. F.

L. A.  Knauss, A. B.  Cawthome, N.  Lettsome, S.  Kellly, S.  Chatraphorn, E. F.  Fleet, F. C.  Wellstood, W. E.  Vanderlinde, “Scanning SQUID microscopy for current imaging,” Microelectron. Reliab. 41, 1211–1229 (2001).
[CrossRef]

Fourillat, P.

T.  Beauchene, D.  Lewis, F.  Beaudoin, V.  Pouget, P.  Perdu, P.  Fourillat, Y.  Danto, “A physical approach on SCOBIC investigation in VLSI,” Microelectron. Reliab., 43, 173–177 (2003).
[CrossRef]

Frommer, A.

Gitin, M. M.

M. M.  Gitin, F. W.  Wise, G.  Arjavalingam, Y.  Pastol, R. C.  Compton, “Broad-band characterization of millimeter-wave log-periodic antennas by photoconductive sampling,” IEEE Trans. on Antennas and Propagation 42, 335–339 (1994).
[CrossRef]

Hangyo, M.

S.  Shikii, T.  Kondo, M.  Yamashita, M.  Tonouchi, M.  Hangyo, “Observation of supercurrent distribution in YBa2Cu3O7 thin films using THz radiation excited with femtosecond laser pulses,” Appl. Phys. Lett. 74, 1317–1319 (1999).
[CrossRef]

Hnagyo, M.

M.  Tonouchi, M.  Yamashita, M.  Hnagyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7 thin film strips,” J. Appl. Phys. 87, 7366 (2000).
[CrossRef]

Hu, B. B.

X. C.  Zhang, B. B.  Hu, J. T.  Darrow, D. H.  Auston, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[CrossRef]

Inoue, S.

K.  Nikawa, S.  Inoue, “LSI failure analysis using focused laser beam heating,” Microelectron. Reliab. 37, 1841–1847 (1997).
[CrossRef]

Jin, Y.

Y.  Jin, X. F.  Ma, G. A.  Wagoner, M.  Alexander, X. C.  Zhang, “Anomalous optically rectification from metal/GaAs interfaces,” Appl. Phys. Lett. 65, 682–684 (1994).
[CrossRef]

Kawase, K.

Kellly, S.

L. A.  Knauss, A. B.  Cawthome, N.  Lettsome, S.  Kellly, S.  Chatraphorn, E. F.  Fleet, F. C.  Wellstood, W. E.  Vanderlinde, “Scanning SQUID microscopy for current imaging,” Microelectron. Reliab. 41, 1211–1229 (2001).
[CrossRef]

Kiwa, T.

Knauss, L. A.

L. A.  Knauss, A. B.  Cawthome, N.  Lettsome, S.  Kellly, S.  Chatraphorn, E. F.  Fleet, F. C.  Wellstood, W. E.  Vanderlinde, “Scanning SQUID microscopy for current imaging,” Microelectron. Reliab. 41, 1211–1229 (2001).
[CrossRef]

Kondo, T.

S.  Shikii, T.  Kondo, M.  Yamashita, M.  Tonouchi, M.  Hangyo, “Observation of supercurrent distribution in YBa2Cu3O7 thin films using THz radiation excited with femtosecond laser pulses,” Appl. Phys. Lett. 74, 1317–1319 (1999).
[CrossRef]

Lettsome, N.

L. A.  Knauss, A. B.  Cawthome, N.  Lettsome, S.  Kellly, S.  Chatraphorn, E. F.  Fleet, F. C.  Wellstood, W. E.  Vanderlinde, “Scanning SQUID microscopy for current imaging,” Microelectron. Reliab. 41, 1211–1229 (2001).
[CrossRef]

Lewis, D.

T.  Beauchene, D.  Lewis, F.  Beaudoin, V.  Pouget, P.  Perdu, P.  Fourillat, Y.  Danto, “A physical approach on SCOBIC investigation in VLSI,” Microelectron. Reliab., 43, 173–177 (2003).
[CrossRef]

Lopata, J.

Ma, X. F.

Y.  Jin, X. F.  Ma, G. A.  Wagoner, M.  Alexander, X. C.  Zhang, “Anomalous optically rectification from metal/GaAs interfaces,” Appl. Phys. Lett. 65, 682–684 (1994).
[CrossRef]

Nikawa, K.

K.  Nikawa, “Laser-SQUID microscopy as a novel tool for inspection, monitoring and analysis of LSI chip defects: Nondestructive and non-electrical contact technique,” IEICE Trans. Electron. E85-C, 746–751 (2002).

K.  Nikawa, S.  Inoue, “LSI failure analysis using focused laser beam heating,” Microelectron. Reliab. 37, 1841–1847 (1997).
[CrossRef]

K.  Nikawa, “Laser-SQUID microscope for LSI chip defect analysis,” in Vortex Electronics and SQUIDs , T.  Kobayashi, H.  Hirakawa, M.  Tonouchi, eds. (Springer, Berlin, 2003), 224–232.

Nuss, M. C.

Pastol, Y.

M. M.  Gitin, F. W.  Wise, G.  Arjavalingam, Y.  Pastol, R. C.  Compton, “Broad-band characterization of millimeter-wave log-periodic antennas by photoconductive sampling,” IEEE Trans. on Antennas and Propagation 42, 335–339 (1994).
[CrossRef]

Perdu, P.

T.  Beauchene, D.  Lewis, F.  Beaudoin, V.  Pouget, P.  Perdu, P.  Fourillat, Y.  Danto, “A physical approach on SCOBIC investigation in VLSI,” Microelectron. Reliab., 43, 173–177 (2003).
[CrossRef]

Pfeiffer, L. N.

Pouget, V.

T.  Beauchene, D.  Lewis, F.  Beaudoin, V.  Pouget, P.  Perdu, P.  Fourillat, Y.  Danto, “A physical approach on SCOBIC investigation in VLSI,” Microelectron. Reliab., 43, 173–177 (2003).
[CrossRef]

Shikii, S.

S.  Shikii, T.  Kondo, M.  Yamashita, M.  Tonouchi, M.  Hangyo, “Observation of supercurrent distribution in YBa2Cu3O7 thin films using THz radiation excited with femtosecond laser pulses,” Appl. Phys. Lett. 74, 1317–1319 (1999).
[CrossRef]

Smith, P. R.

D. H.  Auston, K. P.  Cheung, P. R.  Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Tonouchi, M.

T.  Kiwa, M.  Tonouchi, M.  Yamashita, K.  Kawase, “Laser terahertz-emission microscope for inspecting electrical failures in integrated circuits,” Opt. Lett., 28, 2058–2060 (2003).
[CrossRef] [PubMed]

M.  Tonouchi, M.  Yamashita, M.  Hnagyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7 thin film strips,” J. Appl. Phys. 87, 7366 (2000).
[CrossRef]

S.  Shikii, T.  Kondo, M.  Yamashita, M.  Tonouchi, M.  Hangyo, “Observation of supercurrent distribution in YBa2Cu3O7 thin films using THz radiation excited with femtosecond laser pulses,” Appl. Phys. Lett. 74, 1317–1319 (1999).
[CrossRef]

Vanderlinde, W. E.

L. A.  Knauss, A. B.  Cawthome, N.  Lettsome, S.  Kellly, S.  Chatraphorn, E. F.  Fleet, F. C.  Wellstood, W. E.  Vanderlinde, “Scanning SQUID microscopy for current imaging,” Microelectron. Reliab. 41, 1211–1229 (2001).
[CrossRef]

Wagoner, G. A.

Y.  Jin, X. F.  Ma, G. A.  Wagoner, M.  Alexander, X. C.  Zhang, “Anomalous optically rectification from metal/GaAs interfaces,” Appl. Phys. Lett. 65, 682–684 (1994).
[CrossRef]

Wellstood, F. C.

L. A.  Knauss, A. B.  Cawthome, N.  Lettsome, S.  Kellly, S.  Chatraphorn, E. F.  Fleet, F. C.  Wellstood, W. E.  Vanderlinde, “Scanning SQUID microscopy for current imaging,” Microelectron. Reliab. 41, 1211–1229 (2001).
[CrossRef]

West, K.

Wise, F. W.

M. M.  Gitin, F. W.  Wise, G.  Arjavalingam, Y.  Pastol, R. C.  Compton, “Broad-band characterization of millimeter-wave log-periodic antennas by photoconductive sampling,” IEEE Trans. on Antennas and Propagation 42, 335–339 (1994).
[CrossRef]

Wynn, J.

Yamashita, M.

T.  Kiwa, M.  Tonouchi, M.  Yamashita, K.  Kawase, “Laser terahertz-emission microscope for inspecting electrical failures in integrated circuits,” Opt. Lett., 28, 2058–2060 (2003).
[CrossRef] [PubMed]

M.  Tonouchi, M.  Yamashita, M.  Hnagyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7 thin film strips,” J. Appl. Phys. 87, 7366 (2000).
[CrossRef]

S.  Shikii, T.  Kondo, M.  Yamashita, M.  Tonouchi, M.  Hangyo, “Observation of supercurrent distribution in YBa2Cu3O7 thin films using THz radiation excited with femtosecond laser pulses,” Appl. Phys. Lett. 74, 1317–1319 (1999).
[CrossRef]

Zhang, X. C.

Y.  Jin, X. F.  Ma, G. A.  Wagoner, M.  Alexander, X. C.  Zhang, “Anomalous optically rectification from metal/GaAs interfaces,” Appl. Phys. Lett. 65, 682–684 (1994).
[CrossRef]

X. C.  Zhang, B. B.  Hu, J. T.  Darrow, D. H.  Auston, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[CrossRef]

Appl. Phys. Lett. (4)

D. H.  Auston, K. P.  Cheung, P. R.  Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Y.  Jin, X. F.  Ma, G. A.  Wagoner, M.  Alexander, X. C.  Zhang, “Anomalous optically rectification from metal/GaAs interfaces,” Appl. Phys. Lett. 65, 682–684 (1994).
[CrossRef]

X. C.  Zhang, B. B.  Hu, J. T.  Darrow, D. H.  Auston, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[CrossRef]

S.  Shikii, T.  Kondo, M.  Yamashita, M.  Tonouchi, M.  Hangyo, “Observation of supercurrent distribution in YBa2Cu3O7 thin films using THz radiation excited with femtosecond laser pulses,” Appl. Phys. Lett. 74, 1317–1319 (1999).
[CrossRef]

IEEE Trans. on Antennas and Propagation (1)

M. M.  Gitin, F. W.  Wise, G.  Arjavalingam, Y.  Pastol, R. C.  Compton, “Broad-band characterization of millimeter-wave log-periodic antennas by photoconductive sampling,” IEEE Trans. on Antennas and Propagation 42, 335–339 (1994).
[CrossRef]

IEICE Trans. Electron. (1)

K.  Nikawa, “Laser-SQUID microscopy as a novel tool for inspection, monitoring and analysis of LSI chip defects: Nondestructive and non-electrical contact technique,” IEICE Trans. Electron. E85-C, 746–751 (2002).

J. Appl. Phys. (1)

M.  Tonouchi, M.  Yamashita, M.  Hnagyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7 thin film strips,” J. Appl. Phys. 87, 7366 (2000).
[CrossRef]

Microelectron. Reliab. (3)

L. A.  Knauss, A. B.  Cawthome, N.  Lettsome, S.  Kellly, S.  Chatraphorn, E. F.  Fleet, F. C.  Wellstood, W. E.  Vanderlinde, “Scanning SQUID microscopy for current imaging,” Microelectron. Reliab. 41, 1211–1229 (2001).
[CrossRef]

K.  Nikawa, S.  Inoue, “LSI failure analysis using focused laser beam heating,” Microelectron. Reliab. 37, 1841–1847 (1997).
[CrossRef]

T.  Beauchene, D.  Lewis, F.  Beaudoin, V.  Pouget, P.  Perdu, P.  Fourillat, Y.  Danto, “A physical approach on SCOBIC investigation in VLSI,” Microelectron. Reliab., 43, 173–177 (2003).
[CrossRef]

Opt. Lett. (2)

Other (1)

K.  Nikawa, “Laser-SQUID microscope for LSI chip defect analysis,” in Vortex Electronics and SQUIDs , T.  Kobayashi, H.  Hirakawa, M.  Tonouchi, eds. (Springer, Berlin, 2003), 224–232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the laser terahertz emission microscope.

Fig. 2.
Fig. 2.

The widths of the lines and gaps in the test pattern (a) are 30, 10, 5, 1.5 and 1 µm. THz emission profile (b) from the test pattern is obtained by a line scan measurement with fixing the time delay at the position indicated by an arrow in the temporal waveform (c) of the THz emission. (d) The amplitude spectrum of the THz emission from the line and space pattern.

Fig. 3.
Fig. 3.

(a) The temporal waveform of the THz emission from an LSI 8-bit microprocessor chip and (b) its Fourier spectrum. (c) The THz emission image of the microprocessor.

Fig. 4.
Fig. 4.

(a) The magnified THz emission image of the area indicated by the white square in Fig. 3 (c). (b) The cross-sectional distribution of the THz emission image at the dotted line in Fig. 4 (a).

Metrics