Abstract

We have demonstrated the exchange of sifted quantum cryptographic key over a 730 meter free-space link at rates of up to 1.0 Mbps, two orders of magnitude faster than previously reported results. A classical channel at 1550 nm operates in parallel with a quantum channel at 845 nm. Clock recovery techniques on the classical channel at 1.25 Gbps enable quantum transmission at up to the clock rate. System performance is currently limited by the timing resolution of our silicon avalanche photodiode detectors. With improved detector resolution, our technique will yield another order of magnitude increase in performance, with existing technology.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).
  2. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
    [CrossRef]
  3. T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, “Single-photon interference over 150-km transmission using silica-based integrated-optic interferometers for quantum cryptography,” Eprint quant-ph/0403104 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403104.pdf.
  4. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43.1–43.14 (2002).
    [CrossRef]
  5. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 3 (2002).
    [CrossRef] [PubMed]
  6. A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Develop. 27, 440–451 (1983).
    [CrossRef]
  7. C. H. Bennet and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. of the IEEE Int. Conf. on Computers, Systems & Signal Processing, (Bangalore, India, December 10-12, 1984), pp. 175–179.
  8. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
    [CrossRef] [PubMed]
  9. B. Huttner, A. Muller, J. D. Gauthier, H. Zbinden, and N. Gisin, “Unambiguous quantum measurement of nonorthogonal states,” Phys. Rev. A 54, 3783–3789 (1996).
    [CrossRef] [PubMed]
  10. D. S. Pearson and C. Elliot, “On the optimal mean photon number for quantum cryptography,” Eprint quant-ph/0403065 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403065.pdf
  11. V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).
    [CrossRef] [PubMed]
  12. A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
    [CrossRef]
  13. A. Nakassis, J. Bienfang, and C. Williams, “Expeditious reconciliation for practical quantum key distribution,” to appear in Quantum Information and Computation II, Proc. SPIE 5436, (2004).
    [CrossRef]

2004 (3)

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, “Single-photon interference over 150-km transmission using silica-based integrated-optic interferometers for quantum cryptography,” Eprint quant-ph/0403104 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403104.pdf.

V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

A. Nakassis, J. Bienfang, and C. Williams, “Expeditious reconciliation for practical quantum key distribution,” to appear in Quantum Information and Computation II, Proc. SPIE 5436, (2004).
[CrossRef]

2002 (4)

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43.1–43.14 (2002).
[CrossRef]

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 3 (2002).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

1998 (1)

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

1996 (1)

B. Huttner, A. Muller, J. D. Gauthier, H. Zbinden, and N. Gisin, “Unambiguous quantum measurement of nonorthogonal states,” Phys. Rev. A 54, 3783–3789 (1996).
[CrossRef] [PubMed]

1992 (1)

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

1983 (1)

A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Develop. 27, 440–451 (1983).
[CrossRef]

Acin, A.

V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

Bennet, C. H.

C. H. Bennet and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. of the IEEE Int. Conf. on Computers, Systems & Signal Processing, (Bangalore, India, December 10-12, 1984), pp. 175–179.

Bennett, C. H.

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

Bienfang, J.

A. Nakassis, J. Bienfang, and C. Williams, “Expeditious reconciliation for practical quantum key distribution,” to appear in Quantum Information and Computation II, Proc. SPIE 5436, (2004).
[CrossRef]

Brassard, G.

C. H. Bennet and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. of the IEEE Int. Conf. on Computers, Systems & Signal Processing, (Bangalore, India, December 10-12, 1984), pp. 175–179.

Cova, S. D.

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

Davis, L. M.

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

Derkacs, D.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43.1–43.14 (2002).
[CrossRef]

Elliot, C.

D. S. Pearson and C. Elliot, “On the optimal mean photon number for quantum cryptography,” Eprint quant-ph/0403065 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403065.pdf

Franaszek, P. A.

A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Develop. 27, 440–451 (1983).
[CrossRef]

Gauthier, J. D.

B. Huttner, A. Muller, J. D. Gauthier, H. Zbinden, and N. Gisin, “Unambiguous quantum measurement of nonorthogonal states,” Phys. Rev. A 54, 3783–3789 (1996).
[CrossRef] [PubMed]

Ghioni, M. A.

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

Gisin, N.

V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

B. Huttner, A. Muller, J. D. Gauthier, H. Zbinden, and N. Gisin, “Unambiguous quantum measurement of nonorthogonal states,” Phys. Rev. A 54, 3783–3789 (1996).
[CrossRef] [PubMed]

Gorman, P. M.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 3 (2002).
[CrossRef] [PubMed]

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Halder, M.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 3 (2002).
[CrossRef] [PubMed]

Hatanaka, T.

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, “Single-photon interference over 150-km transmission using silica-based integrated-optic interferometers for quantum cryptography,” Eprint quant-ph/0403104 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403104.pdf.

Hughes, R. J.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43.1–43.14 (2002).
[CrossRef]

Huttner, B.

B. Huttner, A. Muller, J. D. Gauthier, H. Zbinden, and N. Gisin, “Unambiguous quantum measurement of nonorthogonal states,” Phys. Rev. A 54, 3783–3789 (1996).
[CrossRef] [PubMed]

Kimura, T.

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, “Single-photon interference over 150-km transmission using silica-based integrated-optic interferometers for quantum cryptography,” Eprint quant-ph/0403104 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403104.pdf.

Kosaka, H.

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, “Single-photon interference over 150-km transmission using silica-based integrated-optic interferometers for quantum cryptography,” Eprint quant-ph/0403104 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403104.pdf.

Kurtsiefer, C.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 3 (2002).
[CrossRef] [PubMed]

Muller, A.

B. Huttner, A. Muller, J. D. Gauthier, H. Zbinden, and N. Gisin, “Unambiguous quantum measurement of nonorthogonal states,” Phys. Rev. A 54, 3783–3789 (1996).
[CrossRef] [PubMed]

Nakamura, K.

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, “Single-photon interference over 150-km transmission using silica-based integrated-optic interferometers for quantum cryptography,” Eprint quant-ph/0403104 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403104.pdf.

Nakassis, A.

A. Nakassis, J. Bienfang, and C. Williams, “Expeditious reconciliation for practical quantum key distribution,” to appear in Quantum Information and Computation II, Proc. SPIE 5436, (2004).
[CrossRef]

Nambu, Y.

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, “Single-photon interference over 150-km transmission using silica-based integrated-optic interferometers for quantum cryptography,” Eprint quant-ph/0403104 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403104.pdf.

Nordholt, J. E.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43.1–43.14 (2002).
[CrossRef]

Pearson, D. S.

D. S. Pearson and C. Elliot, “On the optimal mean photon number for quantum cryptography,” Eprint quant-ph/0403065 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403065.pdf

Peterson, C. G.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43.1–43.14 (2002).
[CrossRef]

Rarity, J. G.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 3 (2002).
[CrossRef] [PubMed]

Ribordy, G.

V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

Scarani, V.

V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

Spinelli, A.

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

Stucki, D.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Tapster, P. R.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 3 (2002).
[CrossRef] [PubMed]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

Tomita, A.

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, “Single-photon interference over 150-km transmission using silica-based integrated-optic interferometers for quantum cryptography,” Eprint quant-ph/0403104 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403104.pdf.

Weinfurter, H.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 3 (2002).
[CrossRef] [PubMed]

Widmer, A. X.

A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Develop. 27, 440–451 (1983).
[CrossRef]

Williams, C.

A. Nakassis, J. Bienfang, and C. Williams, “Expeditious reconciliation for practical quantum key distribution,” to appear in Quantum Information and Computation II, Proc. SPIE 5436, (2004).
[CrossRef]

Zarda, P.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 3 (2002).
[CrossRef] [PubMed]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

B. Huttner, A. Muller, J. D. Gauthier, H. Zbinden, and N. Gisin, “Unambiguous quantum measurement of nonorthogonal states,” Phys. Rev. A 54, 3783–3789 (1996).
[CrossRef] [PubMed]

IBM J. Res. Develop. (1)

A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Develop. 27, 440–451 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for time-resolved photon counting,” IEEE J. Quantum Electron. 34, 817–821 (1998).
[CrossRef]

Nature (1)

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 3 (2002).
[CrossRef] [PubMed]

New J. Phys. (2)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43.1–43.14 (2002).
[CrossRef]

Phys. Rev. A (1)

B. Huttner, A. Muller, J. D. Gauthier, H. Zbinden, and N. Gisin, “Unambiguous quantum measurement of nonorthogonal states,” Phys. Rev. A 54, 3783–3789 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[CrossRef] [PubMed]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. Nakassis, J. Bienfang, and C. Williams, “Expeditious reconciliation for practical quantum key distribution,” to appear in Quantum Information and Computation II, Proc. SPIE 5436, (2004).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1–41.8 (2002).

Other (3)

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, “Single-photon interference over 150-km transmission using silica-based integrated-optic interferometers for quantum cryptography,” Eprint quant-ph/0403104 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403104.pdf.

C. H. Bennet and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. of the IEEE Int. Conf. on Computers, Systems & Signal Processing, (Bangalore, India, December 10-12, 1984), pp. 175–179.

D. S. Pearson and C. Elliot, “On the optimal mean photon number for quantum cryptography,” Eprint quant-ph/0403065 (2004), http://arxiv.org/ftp/quant-ph/papers/0403/0403065.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The experimental setup. Alice and Bob are personal computers with custom data-handling PCI boards and gigabit Ethernet cards.

Fig. 2.
Fig. 2.

Jitter in the APD from 250 ps optical pulses. The arrival times of the pulses, as reported by the APD, are histogrammed in 12.2 ps time bins. The black line shows a transmission rate of 312 MHz, the gray dashed line shows a transmission rate of 78 MHz. For both distributions the APD count rate is 100 kHz.

Fig. 3.
Fig. 3.

Sifted key bit rate and quantum bit error rate vs. mean photon number.

Metrics