Abstract

We report the first demonstration that carbon nanotubes can be trapped and manipulated by optical tweezers. This observation is surprising because individual nanotubes are substantially smaller than the wavelength of light, and thus should not be amenable to optical trapping. Even so, nanotube bundles, and perhaps even individual nanotubes, can be transported at high speeds, deposited onto substrates, untangled, and selectively ablated, all with visible light. The use of holographic optical tweezers, capable of creating hundreds of independent traps simultaneously, suggests opportunities for highly parallel nanotube processing with light.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Dai, A. Patil, X. Gong, Z. Guo, L. Liu, Y. Liu, and D. Zhu, �??Aligned nanotubes,�?? ChemPhysChem 4, 1150�?? 1169 (2003).
    [CrossRef] [PubMed]
  2. E. R. Dufresne and D. G. Grier, �??Optical tweezer arrays and optical substrates created with diffractive optical elements,�?? Rev. Sci. Instr. 69, 1974�??1977 (1998).
    [CrossRef]
  3. J. E. Curtis, B. A. Koss, and D. G. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Comm. 207, 169�??175 (2002).
    [CrossRef]
  4. D. G. Grier, �??A revolution in optical manipulation,�?? Nature 424, 810�??816 (2003).
    [CrossRef] [PubMed]
  5. M. J. O�??Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, M. J. P., R. H. Hauge, R. B. Weisman, and R. E. Smalley, �??Band gap fluorescence from individual single-walled carbon nanotubes,�?? Science 297, 593�??596 (2002).
    [CrossRef]
  6. Z. Yu and L. Brus, �??Rayleigh and Raman scattering from individual carbon nanotube bundles,�?? J. Phys. Chem. B 105, 1123�??1135 (2001)
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288�??290 (1986).
    [CrossRef] [PubMed]
  8. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,�?? Phys. Rev. Lett. 75, 826�??829 (1995).
    [CrossRef] [PubMed]
  9. N. B. Simpson, L. Allen, and M. J. Padgett, �??Optical tweezers and optical spanners with Laguerre-Gaussian modes,�?? J. Mod. Opt. 43, 2485�??2491 (1996).
    [CrossRef]
  10. K. T. Gahagan and G. A. Swartzlander Jr., �??Optical vortex trapping of particles,�?? Opt. Lett. 21, 827�??829 (1996).
    [CrossRef] [PubMed]
  11. P. Král and H. R. Sadeghpour, �??Laser spinning of nanotubes: A path to fast-rotating microdevices,�?? Phys. Rev. B 65, 161,401 (2002).
    [CrossRef]
  12. A. Ashkin, J. M. Dziedzic, and T. Yamane, �??Optical trapping and manipulation of single cells using infrared-laser beams,�?? Nature 330, 608�??609 (1987).
    [CrossRef]
  13. M. W. Berns, H. Liang, W. H. Wright, and I. A. Vorobjev, �??Manipulation of chromosomes with optical scissors and tweezers,�?? Molecular Biology of the Cell 3, A345 (1992).
  14. K. Y. Lim, C. H. Sow, J. Lin, F. C. Cheong, Z. X. Shen, J. T. L. Thong, K. C. Chin, and A. T. S. Wee, �??Laser pruning of carbon nanotubes as a route to static and movable structures,�?? Adv. Mater. 15, 300�??303 (2003).
    [CrossRef]
  15. F. C. Cheong, K. Y. Lim, C. H. Sow, J. Lin, and C. K. Ong, �??Large area patterned arrays of aligned carbon nanotubes via laser trimming,�?? Nanotechnology 14, 433�??437 (2003).
    [CrossRef]
  16. L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, �??Directed placement of suspended carbon nanotubes for nanometer-scale assembly,�?? Appl. Phys. Lett. 80, 3826�??3828 (2002).
    [CrossRef]
  17. J. Suehiro, G. B. Zhou, and M. Hara, �??Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy,�?? J. Phys. D 36, L109�??L114 (2003).
    [CrossRef]
  18. P. T. Korda, M. B. Taylor, and D. G. Grier, �??Kinetically locked-in colloidal transport in an array of optical tweezers,�?? Phys. Rev. Lett. 89, 128301 (2002).
    [CrossRef] [PubMed]
  19. K. Ladavac, K. Kasza, and D. G. Grier, �??Sorting by periodic potential energy landscapes: Optical fractionation," cond-mat/0310396.

Adv. Mater. (1)

K. Y. Lim, C. H. Sow, J. Lin, F. C. Cheong, Z. X. Shen, J. T. L. Thong, K. C. Chin, and A. T. S. Wee, �??Laser pruning of carbon nanotubes as a route to static and movable structures,�?? Adv. Mater. 15, 300�??303 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, �??Directed placement of suspended carbon nanotubes for nanometer-scale assembly,�?? Appl. Phys. Lett. 80, 3826�??3828 (2002).
[CrossRef]

ChemPhysChem (1)

L. Dai, A. Patil, X. Gong, Z. Guo, L. Liu, Y. Liu, and D. Zhu, �??Aligned nanotubes,�?? ChemPhysChem 4, 1150�?? 1169 (2003).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

N. B. Simpson, L. Allen, and M. J. Padgett, �??Optical tweezers and optical spanners with Laguerre-Gaussian modes,�?? J. Mod. Opt. 43, 2485�??2491 (1996).
[CrossRef]

J. Phys. Chem. B (1)

Z. Yu and L. Brus, �??Rayleigh and Raman scattering from individual carbon nanotube bundles,�?? J. Phys. Chem. B 105, 1123�??1135 (2001)
[CrossRef]

J. Phys. D (1)

J. Suehiro, G. B. Zhou, and M. Hara, �??Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy,�?? J. Phys. D 36, L109�??L114 (2003).
[CrossRef]

Molecular Biology of the Cell (1)

M. W. Berns, H. Liang, W. H. Wright, and I. A. Vorobjev, �??Manipulation of chromosomes with optical scissors and tweezers,�?? Molecular Biology of the Cell 3, A345 (1992).

Nanotechnology (1)

F. C. Cheong, K. Y. Lim, C. H. Sow, J. Lin, and C. K. Ong, �??Large area patterned arrays of aligned carbon nanotubes via laser trimming,�?? Nanotechnology 14, 433�??437 (2003).
[CrossRef]

Nature (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, �??Optical trapping and manipulation of single cells using infrared-laser beams,�?? Nature 330, 608�??609 (1987).
[CrossRef]

D. G. Grier, �??A revolution in optical manipulation,�?? Nature 424, 810�??816 (2003).
[CrossRef] [PubMed]

Opt. Comm. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Comm. 207, 169�??175 (2002).
[CrossRef]

Opt. Lett. (2)

Phy. Rev. Lett. (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,�?? Phys. Rev. Lett. 75, 826�??829 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. Král and H. R. Sadeghpour, �??Laser spinning of nanotubes: A path to fast-rotating microdevices,�?? Phys. Rev. B 65, 161,401 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

P. T. Korda, M. B. Taylor, and D. G. Grier, �??Kinetically locked-in colloidal transport in an array of optical tweezers,�?? Phys. Rev. Lett. 89, 128301 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instr. (1)

E. R. Dufresne and D. G. Grier, �??Optical tweezer arrays and optical substrates created with diffractive optical elements,�?? Rev. Sci. Instr. 69, 1974�??1977 (1998).
[CrossRef]

Science (1)

M. J. O�??Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, M. J. P., R. H. Hauge, R. B. Weisman, and R. E. Smalley, �??Band gap fluorescence from individual single-walled carbon nanotubes,�?? Science 297, 593�??596 (2002).
[CrossRef]

Other (1)

K. Ladavac, K. Kasza, and D. G. Grier, �??Sorting by periodic potential energy landscapes: Optical fractionation," cond-mat/0310396.

Supplementary Material (1)

» Media 1: MPG (1082 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Images of carbon nanotubes processed with holographic optical tweezers. (a-c) A dispersion of SWNTs is gathered into an optical trap and translated through water at up to 100 μm/sec. Arrows in (c) indicate the direction of motion. A burst of intense illumination that saturates the CCD camera (d) deposits the nanotubes onto a substrate (e). (f) Repeating this process forms extended structures. (g-i) A single optical tweezer can extract a rope of nanotubes from a bundle. The arrows in (h) and (i) indicate the tweezer’s position. (j) and (k) show bundles of SWNTs trapped and spun by an optical vortex with helical pitch ℓ = 10. (l) Shows four geometric shapes simultaneously cut into bucky paper with four holographic optical tweezers. The square in this figure is 2.9 μm across and serves as a scale bar for the images (Movie 1.8 MB).

Metrics