Abstract

A design of an optical resonator for generation of a doughnutlike laser beam in the far field is proposed. The resonator consists of a toric mirror, a flat output coupler, and a w-axicon with a movable center axicon. Two-dimensional vector electric field simulation has shown that any one of the Laguerre–Gaussian modes can be selected by sliding the center axicon. Therefore this resonator is capable of generating doughnut-like laser beams, whose dark spot size can be controlled in real time. This feature of the proposed resonator is advantageous for atom trapping and optical tweezers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. M. Iftiquar, H. Ito, and M. Ohtsu, �??Tunable doughnut light beam for a near-field optical funnel of atoms,�?? Tech. Digest of the CLEO/PR01 (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 34-35.
  2. Y. Song, D. Milan, and W. T. Hill III, �??Long, narrow all-light atom guide,�?? Opt. Lett. 24, 1805-1807 (1999).
    [CrossRef]
  3. E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, and R. E. Williams, �??Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,�?? Phys. Rev. Lett. 90 203901 (2003).
    [CrossRef] [PubMed]
  4. N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, �??Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,�?? Phys. Rev. A 61, 031403 (2000).
    [CrossRef]
  5. N. Hodgson and H. Weber, Optical Resonators (Springer, New York, 1997), p. 546.
  6. N. Hodgson and H. Weber, Optical Resonators (Springer, New York, 1997), p. 168.
  7. D. Fink, �??Polarization effects of axicons,�?? Appl. Opt. 18, 581-582 (1979).
    [CrossRef] [PubMed]
  8. D. Ehrlichmann, U. Habich, and H. D. Plum, �??Diffusion-cooled CO2 laser with coaxial high frequency excitation and internal axicon,�?? J. Phys. D 26, 183-191 (1993).
    [CrossRef]
  9. A. Bhowmik, �??Closed-cavity solutions with partially coherent fields in the space-frequency domain,�?? Appl. Opt. 22, 3338-3346 (1983).
    [CrossRef] [PubMed]
  10. M. Endo, M. Kawakami, K. Nanri, S. Takeda, and T. Fujioka, �??Two-dimensional simulation of an unstable resonator with a stable core,�?? Appl. Opt. 38, 3298-3307 (1999).
    [CrossRef]

Appl. Opt.

CLEO

S. M. Iftiquar, H. Ito, and M. Ohtsu, �??Tunable doughnut light beam for a near-field optical funnel of atoms,�?? Tech. Digest of the CLEO/PR01 (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 34-35.

J. Phys. D

D. Ehrlichmann, U. Habich, and H. D. Plum, �??Diffusion-cooled CO2 laser with coaxial high frequency excitation and internal axicon,�?? J. Phys. D 26, 183-191 (1993).
[CrossRef]

Opt. Lett.

Phys. Rev. A

N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson, �??Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,�?? Phys. Rev. A 61, 031403 (2000).
[CrossRef]

Phys. Rev. Lett.

E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, and R. E. Williams, �??Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,�?? Phys. Rev. Lett. 90 203901 (2003).
[CrossRef] [PubMed]

Other

N. Hodgson and H. Weber, Optical Resonators (Springer, New York, 1997), p. 546.

N. Hodgson and H. Weber, Optical Resonators (Springer, New York, 1997), p. 168.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic drawing of the w-axicon resonator with movable center axicon. Toric mirror, aperture, and outer axicon are cut in half for better visibility. (b) Mode selection mechanism of the w-axicon resonator.

Fig. 2.
Fig. 2.

Polarization scrambling of the w-axicon reflector. The right-hand image shows how the linear polarization at the ring part is converted through the double reflection.

Fig. 3.
Fig. 3.

Schematic drawing of the simulated w-axicon resonator.

Fig. 4.
Fig. 4.

Round-trip loss of the LG0l mode as a function of the position of the center axicon.

Fig. 5.
Fig. 5.

Far-field pattern of the output beam for various axicon positions.

Fig. 6.
Fig. 6.

Output power of the resonator versus tilt angle of the toric mirror.

Fig. 7.
Fig. 7.

Intensity distribution of the output beam focused by a f= 1.0 m lens. Axicon position is P =1.5 mm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E 0 l r ϕ 1 r exp [ ( r r 0 ) 2 w 0 2 ] exp [ ± ilϕ ] ,
E pl ( r , ϕ ) [ 2 r w 0 ] l L p l [ 2 r 2 w 0 2 ] exp [ r 2 w 0 2 ] exp [ ilϕ ] ,
r i = ( x i 2 + y i 2 ) 1 / 2 , φ = tan 1 ( y i / x i )
r 2 = L cc r 1
E p ( r 1 , φ ) = E x ( x 1 , y 1 ) cos φ + E y ( x 1 , y 1 ) sin φ
E s ( r 1 , φ ) = E x ( x 1 , y 1 ) sin φ + E y ( x 1 , y 1 ) cos φ
E p ( r 2 , φ ) = r p 2 ( r 1 r 2 ) 1 / 2 E p ( r 1 , φ ) exp [ ik L cc ]
E s ( r 2 , φ ) = r s 2 ( r 1 r 2 ) 1 / 2 E s ( r 1 , φ ) exp [ ik L cc ]
E 0 ( x , y ) = ψ 0 exp [ i 2 π { R ( x , y ) 1 / 2 } ] ,

Metrics