Abstract

We propose a novel design of highly birefringent optical fiber composed of a central elliptical air hole, a circumferential elliptical ring core, and a circular cladding. The proposed waveguide structure is predicted to produce a linear birefringence higher by an order of magnitude than the solid elliptical core fiber. The large index contrast between the central air and germanosilica elliptical ring core is mainly attributed to the high birefringence and its characteristics are theoretically analyzed in terms of its waveguide parameters.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. A. Bergh, H. C. Lefervre, and H. J. Shaw, �??An overview of fiber-optic gyroscopes,�?? J. Lightwave Technol. 2, 91-107 (1984).
    [CrossRef]
  2. M. Nakazawa, �??Highly efficient Raman amplification in a polarization-preserving optical fiber,�?? Appl. Phys. Lett. 46, 628-630 (1985).
    [CrossRef]
  3. R. B. Dyott, J. R. Cozens, and D. G. Morris, �??Preservation of polarization in optical-fiber waveguides with elliptical cores,�?? Electron. Lett. 15, 380-382 (1979).
    [CrossRef]
  4. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, �??Low-loss single polarization fibers with asymmetrical strain birefringence,�?? Electron. Lett. 17, 530-531 (1981).
    [CrossRef]
  5. L. Poti, and A. Bogoni, �??Experimental demonstration of a PMD compensator with a step control algorithm,�?? IEEE Photon. Technol. Lett. 13, 1367-1369 (2001).
    [CrossRef]
  6. C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W.A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, �??Characteristics of Q-switched cladding-pumped Ytterbium-doped fiber lasers with different high-energy fiber designs,�?? IEEE J. Quantum Electon. Lett. 37, 199-206 (2001).
    [CrossRef]
  7. S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G.. Lee, �??Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,�?? IEEE Photon. Technol. Lett. 14, 249-250 (2002).
  8. S. Choi, W. Shin, and K. Oh, �??Higher-order-mode dispersion compensation technique based on mode converter using hollow optical fiber,�?? in Proc. Optical Fiber Communication Conference 2002 (Optical Society of America, Washington, D.C., 2002), pp. 177-178.
  9. S. Choi, T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, �??Novel all-fiber bandpass filter based on hollow optical fiber,�?? IEEE Photon. Technol. Lett. 14, 1701-1703 (2002).
    [CrossRef]
  10. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>.
    [CrossRef] [PubMed]
  11. Y.-J. Lee, D.-S. Song, S.-H. Kim, J. Huh, and Y.-H. Lee, �??Modal Characteristics of photonic crystal fibers,�?? J. Opt. Soc. Korea 7, 47-52 (2003).
    [CrossRef]
  12. I.-K. Hwang, Y.-J. Lee, and Y.-H. Lee, "Birefringence induced by irregular structure in photonic crystal fiber," Opt. Express 11, 2799-2806 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22- 2799">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22- 2799</a>.
    [CrossRef] [PubMed]

. Lightwave Technol. (1)

R. A. Bergh, H. C. Lefervre, and H. J. Shaw, �??An overview of fiber-optic gyroscopes,�?? J. Lightwave Technol. 2, 91-107 (1984).
[CrossRef]

Appl. Phys. Lett. (1)

M. Nakazawa, �??Highly efficient Raman amplification in a polarization-preserving optical fiber,�?? Appl. Phys. Lett. 46, 628-630 (1985).
[CrossRef]

Electron. Lett. (2)

R. B. Dyott, J. R. Cozens, and D. G. Morris, �??Preservation of polarization in optical-fiber waveguides with elliptical cores,�?? Electron. Lett. 15, 380-382 (1979).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, �??Low-loss single polarization fibers with asymmetrical strain birefringence,�?? Electron. Lett. 17, 530-531 (1981).
[CrossRef]

IEEE J. Quantum Electon. Lett. (1)

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W.A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, �??Characteristics of Q-switched cladding-pumped Ytterbium-doped fiber lasers with different high-energy fiber designs,�?? IEEE J. Quantum Electon. Lett. 37, 199-206 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G.. Lee, �??Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,�?? IEEE Photon. Technol. Lett. 14, 249-250 (2002).

S. Choi, T. J. Eom, J. W. Yu, B. H. Lee, and K. Oh, �??Novel all-fiber bandpass filter based on hollow optical fiber,�?? IEEE Photon. Technol. Lett. 14, 1701-1703 (2002).
[CrossRef]

L. Poti, and A. Bogoni, �??Experimental demonstration of a PMD compensator with a step control algorithm,�?? IEEE Photon. Technol. Lett. 13, 1367-1369 (2001).
[CrossRef]

Opt. Express (2)

Opt. Soc. Korea (1)

Y.-J. Lee, D.-S. Song, S.-H. Kim, J. Huh, and Y.-H. Lee, �??Modal Characteristics of photonic crystal fibers,�?? J. Opt. Soc. Korea 7, 47-52 (2003).
[CrossRef]

Optical Fiber Communication Conference (1)

S. Choi, W. Shin, and K. Oh, �??Higher-order-mode dispersion compensation technique based on mode converter using hollow optical fiber,�?? in Proc. Optical Fiber Communication Conference 2002 (Optical Society of America, Washington, D.C., 2002), pp. 177-178.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The cross section of the proposed elliptical hollow optical fiber. The elliptical air hole is concentric to the elliptical ring core. Key waveguide parameters are; the major axes of the air hole, and the ring core, ahole , and acore , the minor axes, bhole , and bcore , the refractive index difference of core and cladding, Δn.

Fig. 2.
Fig. 2.

The electrical field profiles of (a) y- and (b) x-polarization modes. The white dashed curve indicates the core-cladding boundary. The core-cladding index difference was set to be 0.02. The central air hole regions are magnified in (a’) and (b’) to show the details. The black dashed curve indicates the elliptical air-core interface. The color level and the arrows denote the amplitude and the direction of the electric field, respectively. Note that electric field amplitude in the x-polarization is more significantly suppressed at the interface than that in the y-polarization.

Fig. 3.
Fig. 3.

Birefringence as a function of normalized frequency, Vab . Each curve corresponds to each hole size, ahole /acore . The core-cladding index differences, Δn, are (a) 0.01 and (b) 0.02.

Fig. 4.
Fig. 4.

The birefringence as a function of the hole size, ahole /λ. Each curve corresponds to each Δn.

Fig. 5.
Fig. 5.

The birefringence maxima achievable with each Δn: A, the maxima of the total birefringence from Fig. 5; B, the birefringence at ahole =0; A-B, the birefringence due to the core-air boundary effect. The data in diamonds and triangles symbols are fitted with a parabolic and a linear function, respectively.

Fig. 6.
Fig. 6.

The birefringence as a function of ellipticity. The ellipticity of the hole and the core was varied simultaneously. Each curve corresponds to each Δn.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E 1 t = E 2 t
D 1 n = D 2 n or n 1 2 E 1 n = n 2 2 E 2 n
V ab = 2 π a core b core λ n core 2 n clad 2 2 π a core λ n clad · Δ n
a core = λ π n cl · Δ n .
a hole 0.18 λ

Metrics