Abstract

We successfully developed an arbitrary micro-patterning method with femtosecond pulses using a multi-level phase type diffractive optical element (DOE) and a focusing objective lens. The large chromatic dispersion effects of DOE resulting from the spectral bandwidth of femtosecond pulses can be reduced with the appropriate DOE focal length and the proper distance between the DOE and the focusing lens. The method was verified through optical and processing experiments. A partial periodic structure was formed at the designated position. Microstructures were precisely formed on the SiO2 glass surface and inside the glass by irradiating the constructed beam. The points were evenly dispersed with a separation of 5 μm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, �??Writing waveguides in glass with a femtosecond laser,�?? Opt. Lett. 21, 1729 (1996)
    [CrossRef] [PubMed]
  2. K. Miura, J. Qui, H. Inoue, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329 (1997)
    [CrossRef]
  3. Y. Kondo, K. Nouchi, T. Mitsuyu, M.Watanabe, P. G. Kazansky, and K. Hirao, �??Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,�?? Opt. Lett. 24, 646 (1999)
    [CrossRef]
  4. E. Fertein, C. Przygodzki, H. Delbarre, A. Hidayat, M. Douay, and P. Niay, �??Refractive-index change of standard telecommunication fiber through exposure to femtosecond laser pulses at 810 nm,�?? Appl. Opt. 40, 3506 (2001)
    [CrossRef]
  5. H.-B. Sun, S. Matsuo and H. Misawa, �??Microfabrication and Characteristics of Two-Dimensional Photonic Crystal Structures in Vitreous Silica,�?? Opt. Rev. 6, 396 (1999)
    [CrossRef]
  6. H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, �??Arbitrary- Lattice Photonic Crystals Created by Multiphoton Microfabrication,�?? Opt. Lett. 26, 325 (2001)
    [CrossRef]
  7. K. Kawamura, M. Hirano, T. Kamiya, and H. Hosono, �??Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse,�?? Appl. Phys. Lett. 81, 1137 (2002)
    [CrossRef]
  8. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, �??Femtosecond Laser Interference Technique with Diffractive Beam Splitter for Fabrication of Three-Dimensional Photonic Crystals,�?? Appl. Phys. Lett., 79, 725 (2001)
    [CrossRef]
  9. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis and H. Misawa, �??Multi-photon fabrication of periodic structures by multi-beam interference of femtosecond pulses,�?? Appl.Phys.Lett. 82, 2758 (2003)
    [CrossRef]
  10. J. Turunen and F. Wyrowski, Diffractive optics for industrial and commercial applications (Akademie Verlag, Berlin, 1997)
  11. J. Amako, and T. Sonehara, �??Kinoform using an electrically controlled birefringent liquid-crystal spatial modulator,�?? Appl. Opt. 30, 4622 (1991)
    [CrossRef] [PubMed]
  12. J. Amako, K. Nagasaka, and K. Nishida, �??Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of pair of diffractive optical elements,�?? Opt. Lett. 27, 969 (2002)
    [CrossRef]
  13. . S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, �??Fiber Bragg grating made with a phase mask and 800-nm femtosecond radiation,�?? Opt. Lett. 28, 995 (2003)
    [CrossRef] [PubMed]
  14. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, K. Hirao, �??3D patterning method in femtosecond laser microprocessing using diffractive optical elements,�?? Proc. SPIE, (to be published)
  15. D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, �??Application of selffocusing of ps laser pulses for three-dimensional microstructuring of transparent materials,�?? Appl. Phys. Lett. 72, 1442 (1998)
    [CrossRef]
  16. K. Yamada, W. Watanabe, T. Toma, and K. Ito, �??In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,�?? Opt. Lett. 26, 19 (2001)
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

K. Kawamura, M. Hirano, T. Kamiya, and H. Hosono, �??Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse,�?? Appl. Phys. Lett. 81, 1137 (2002)
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, �??Femtosecond Laser Interference Technique with Diffractive Beam Splitter for Fabrication of Three-Dimensional Photonic Crystals,�?? Appl. Phys. Lett., 79, 725 (2001)
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis and H. Misawa, �??Multi-photon fabrication of periodic structures by multi-beam interference of femtosecond pulses,�?? Appl.Phys.Lett. 82, 2758 (2003)
[CrossRef]

K. Miura, J. Qui, H. Inoue, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329 (1997)
[CrossRef]

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, �??Application of selffocusing of ps laser pulses for three-dimensional microstructuring of transparent materials,�?? Appl. Phys. Lett. 72, 1442 (1998)
[CrossRef]

Opt. Lett. (6)

Opt. Rev. (1)

H.-B. Sun, S. Matsuo and H. Misawa, �??Microfabrication and Characteristics of Two-Dimensional Photonic Crystal Structures in Vitreous Silica,�?? Opt. Rev. 6, 396 (1999)
[CrossRef]

Proc. SPIE (1)

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, K. Hirao, �??3D patterning method in femtosecond laser microprocessing using diffractive optical elements,�?? Proc. SPIE, (to be published)

Other (1)

J. Turunen and F. Wyrowski, Diffractive optics for industrial and commercial applications (Akademie Verlag, Berlin, 1997)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Configuration for femtosecond laser irradiation with a DOE.

Fig. 2.
Fig. 2.

Experimental setup for femtosecond laser irradiation with DOE.

Fig. 3.
Fig. 3.

Focal shape of the DOE (a) without objective lens, (b) with objective lens.

Fig. 4.
Fig. 4.

Beam profile of focal point (a) with DOE and (b) without DOE.

Fig. 5.
Fig. 5.

Surface view of ablation pattern observed by optical microscopy.

Fig. 6.
Fig. 6.

Processed area inside the glass observed by optical microscopy. (a) Top view and (b) side view.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ fb = fb Δ λ λ ,
Z m f fb fb ( 1 f fb 1 1 x / fb ) ,
y f fb M ( 1 1 x / fb ) ,
Δ Z m f 2 fb 1 ( 1 x / fb ) 2 Δ λ λ + Δ f ,
Δ y Mf fb ( 1 + x / fb ( 1 x / fb ) 2 ) Δλ λ .
f 2 fb 1 ( 1 x / fb ) 2 Δ λ λ ,

Metrics