Abstract

We successfully developed an arbitrary micro-patterning method with femtosecond pulses using a multi-level phase type diffractive optical element (DOE) and a focusing objective lens. The large chromatic dispersion effects of DOE resulting from the spectral bandwidth of femtosecond pulses can be reduced with the appropriate DOE focal length and the proper distance between the DOE and the focusing lens. The method was verified through optical and processing experiments. A partial periodic structure was formed at the designated position. Microstructures were precisely formed on the SiO2 glass surface and inside the glass by irradiating the constructed beam. The points were evenly dispersed with a separation of 5 μm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729 (1996).
    [CrossRef] [PubMed]
  2. K. Miura, J. Qui, H. Inoue, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
    [CrossRef]
  3. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24, 646 (1999).
    [CrossRef]
  4. E. Fertein, C. Przygodzki, H. Delbarre, A. Hidayat, M. Douay, and P. Niay, “Refractive-index change of standard telecommunication fiber through exposure to femtosecond laser pulses at 810 nm,” Appl. Opt. 40, 3506 (2001).
    [CrossRef]
  5. H.-B. Sun, S. Matsuo, and H. Misawa, “Microfabrication and Characteristics of Two-Dimensional Photonic Crystal Structures in Vitreous Silica,” Opt. Rev.,  6, 396 (1999).
    [CrossRef]
  6. H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Arbitrary-Lattice Photonic Crystals Created by Multiphoton Microfabrication,” Opt. Lett. 26, 325 (2001).
    [CrossRef]
  7. K. Kawamura, M. Hirano, T. Kamiya, and H. Hosono, “Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse,” Appl. Phys. Lett. 81, 1137 (2002).
    [CrossRef]
  8. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond Laser Interference Technique with Diffractive Beam Splitter for Fabrication of Three-Dimensional Photonic Crystals,” Appl. Phys. Lett.,  79, 725 (2001).
    [CrossRef]
  9. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multi-photon fabrication of periodic structures by multi-beam interference of femtosecond pulses,” Appl.Phys.Lett. 82, 2758 (2003).
    [CrossRef]
  10. J. Turunen and F. Wyrowski, Diffractive optics for industrial and commercial applications (Akademie Verlag, Berlin,1997).
  11. J. Amako and T. Sonehara, “Kinoform using an electrically controlled birefringent liquid-crystal spatial modulator,” Appl. Opt. 30, 4622 (1991).
    [CrossRef] [PubMed]
  12. J. Amako, K. Nagasaka, and K. Nishida, “Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of pair of diffractive optical elements,” Opt. Lett. 27, 969 (2002).
    [CrossRef]
  13. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg grating made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995 (2003).
    [CrossRef] [PubMed]
  14. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “3D patterning method in femtosecond laser microprocessing using diffractive optical elements,” Proc. SPIE, (to be published).
  15. D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442 (1998).
    [CrossRef]
  16. K. Yamada, W. Watanabe, T. Toma, and K. Ito, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26, 19 (2001).
    [CrossRef]

2003 (2)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multi-photon fabrication of periodic structures by multi-beam interference of femtosecond pulses,” Appl.Phys.Lett. 82, 2758 (2003).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg grating made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995 (2003).
[CrossRef] [PubMed]

2002 (2)

J. Amako, K. Nagasaka, and K. Nishida, “Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of pair of diffractive optical elements,” Opt. Lett. 27, 969 (2002).
[CrossRef]

K. Kawamura, M. Hirano, T. Kamiya, and H. Hosono, “Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse,” Appl. Phys. Lett. 81, 1137 (2002).
[CrossRef]

2001 (4)

1999 (2)

H.-B. Sun, S. Matsuo, and H. Misawa, “Microfabrication and Characteristics of Two-Dimensional Photonic Crystal Structures in Vitreous Silica,” Opt. Rev.,  6, 396 (1999).
[CrossRef]

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24, 646 (1999).
[CrossRef]

1998 (1)

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442 (1998).
[CrossRef]

1997 (1)

K. Miura, J. Qui, H. Inoue, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

1996 (1)

1991 (1)

Amako, J.

Ashkenasi, D.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442 (1998).
[CrossRef]

Cambell, E. E. B.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442 (1998).
[CrossRef]

Davis, K.M.

Delbarre, H.

Ding, H.

Douay, M.

Fertein, E.

Grobnic, D.

Henderson, G.

Henz, S.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442 (1998).
[CrossRef]

Hermann, J.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442 (1998).
[CrossRef]

Hidayat, A.

Hirano, M.

K. Kawamura, M. Hirano, T. Kamiya, and H. Hosono, “Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse,” Appl. Phys. Lett. 81, 1137 (2002).
[CrossRef]

Hirao, K.

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24, 646 (1999).
[CrossRef]

K. Miura, J. Qui, H. Inoue, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729 (1996).
[CrossRef] [PubMed]

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “3D patterning method in femtosecond laser microprocessing using diffractive optical elements,” Proc. SPIE, (to be published).

Hosono, H.

K. Kawamura, M. Hirano, T. Kamiya, and H. Hosono, “Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse,” Appl. Phys. Lett. 81, 1137 (2002).
[CrossRef]

Inoue, H.

K. Miura, J. Qui, H. Inoue, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Ito, K.

Juodkazis, S.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multi-photon fabrication of periodic structures by multi-beam interference of femtosecond pulses,” Appl.Phys.Lett. 82, 2758 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond Laser Interference Technique with Diffractive Beam Splitter for Fabrication of Three-Dimensional Photonic Crystals,” Appl. Phys. Lett.,  79, 725 (2001).
[CrossRef]

H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Arbitrary-Lattice Photonic Crystals Created by Multiphoton Microfabrication,” Opt. Lett. 26, 325 (2001).
[CrossRef]

Kamiya, T.

K. Kawamura, M. Hirano, T. Kamiya, and H. Hosono, “Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse,” Appl. Phys. Lett. 81, 1137 (2002).
[CrossRef]

Kawamura, K.

K. Kawamura, M. Hirano, T. Kamiya, and H. Hosono, “Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse,” Appl. Phys. Lett. 81, 1137 (2002).
[CrossRef]

Kazansky, P. G.

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multi-photon fabrication of periodic structures by multi-beam interference of femtosecond pulses,” Appl.Phys.Lett. 82, 2758 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond Laser Interference Technique with Diffractive Beam Splitter for Fabrication of Three-Dimensional Photonic Crystals,” Appl. Phys. Lett.,  79, 725 (2001).
[CrossRef]

Kondo, Y.

Kuroiwa, Y.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “3D patterning method in femtosecond laser microprocessing using diffractive optical elements,” Proc. SPIE, (to be published).

Lu, P.

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multi-photon fabrication of periodic structures by multi-beam interference of femtosecond pulses,” Appl.Phys.Lett. 82, 2758 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond Laser Interference Technique with Diffractive Beam Splitter for Fabrication of Three-Dimensional Photonic Crystals,” Appl. Phys. Lett.,  79, 725 (2001).
[CrossRef]

H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Arbitrary-Lattice Photonic Crystals Created by Multiphoton Microfabrication,” Opt. Lett. 26, 325 (2001).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, “Microfabrication and Characteristics of Two-Dimensional Photonic Crystal Structures in Vitreous Silica,” Opt. Rev.,  6, 396 (1999).
[CrossRef]

Mihailov, S. J.

Misawa, H.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multi-photon fabrication of periodic structures by multi-beam interference of femtosecond pulses,” Appl.Phys.Lett. 82, 2758 (2003).
[CrossRef]

H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Arbitrary-Lattice Photonic Crystals Created by Multiphoton Microfabrication,” Opt. Lett. 26, 325 (2001).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond Laser Interference Technique with Diffractive Beam Splitter for Fabrication of Three-Dimensional Photonic Crystals,” Appl. Phys. Lett.,  79, 725 (2001).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, “Microfabrication and Characteristics of Two-Dimensional Photonic Crystal Structures in Vitreous Silica,” Opt. Rev.,  6, 396 (1999).
[CrossRef]

Mitsuyu, T.

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24, 646 (1999).
[CrossRef]

K. Miura, J. Qui, H. Inoue, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Miura, K.

K. Miura, J. Qui, H. Inoue, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729 (1996).
[CrossRef] [PubMed]

Mizeikis, V.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multi-photon fabrication of periodic structures by multi-beam interference of femtosecond pulses,” Appl.Phys.Lett. 82, 2758 (2003).
[CrossRef]

Nagasaka, K.

Narita, Y.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “3D patterning method in femtosecond laser microprocessing using diffractive optical elements,” Proc. SPIE, (to be published).

Niay, P.

Nishida, K.

Nishii, J.

Nouchi, K.

Przygodzki, C.

Qui, J.

K. Miura, J. Qui, H. Inoue, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

Rosenfeld, A.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442 (1998).
[CrossRef]

Smelser, C. W.

Sonehara, T.

Sugimoto, N.

Sun, H.-B.

H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Arbitrary-Lattice Photonic Crystals Created by Multiphoton Microfabrication,” Opt. Lett. 26, 325 (2001).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, “Microfabrication and Characteristics of Two-Dimensional Photonic Crystal Structures in Vitreous Silica,” Opt. Rev.,  6, 396 (1999).
[CrossRef]

Sun, K.

Takeshima, N.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “3D patterning method in femtosecond laser microprocessing using diffractive optical elements,” Proc. SPIE, (to be published).

Tanaka, S.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “3D patterning method in femtosecond laser microprocessing using diffractive optical elements,” Proc. SPIE, (to be published).

Toma, T.

Turunen, J.

J. Turunen and F. Wyrowski, Diffractive optics for industrial and commercial applications (Akademie Verlag, Berlin,1997).

Unruh, J.

Varel, H.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442 (1998).
[CrossRef]

Walker, R. B.

Watanabe, M.

Watanabe, W.

Wyrowski, F.

J. Turunen and F. Wyrowski, Diffractive optics for industrial and commercial applications (Akademie Verlag, Berlin,1997).

Xu, Y.

Yamada, K.

Appl. Opt. (2)

Appl. Phys. Lett. (4)

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442 (1998).
[CrossRef]

K. Miura, J. Qui, H. Inoue, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329 (1997).
[CrossRef]

K. Kawamura, M. Hirano, T. Kamiya, and H. Hosono, “Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse,” Appl. Phys. Lett. 81, 1137 (2002).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond Laser Interference Technique with Diffractive Beam Splitter for Fabrication of Three-Dimensional Photonic Crystals,” Appl. Phys. Lett.,  79, 725 (2001).
[CrossRef]

Appl.Phys.Lett. (1)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multi-photon fabrication of periodic structures by multi-beam interference of femtosecond pulses,” Appl.Phys.Lett. 82, 2758 (2003).
[CrossRef]

Opt. Lett. (6)

Opt. Rev. (1)

H.-B. Sun, S. Matsuo, and H. Misawa, “Microfabrication and Characteristics of Two-Dimensional Photonic Crystal Structures in Vitreous Silica,” Opt. Rev.,  6, 396 (1999).
[CrossRef]

Other (2)

J. Turunen and F. Wyrowski, Diffractive optics for industrial and commercial applications (Akademie Verlag, Berlin,1997).

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “3D patterning method in femtosecond laser microprocessing using diffractive optical elements,” Proc. SPIE, (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Configuration for femtosecond laser irradiation with a DOE.

Fig. 2.
Fig. 2.

Experimental setup for femtosecond laser irradiation with DOE.

Fig. 3.
Fig. 3.

Focal shape of the DOE (a) without objective lens, (b) with objective lens.

Fig. 4.
Fig. 4.

Beam profile of focal point (a) with DOE and (b) without DOE.

Fig. 5.
Fig. 5.

Surface view of ablation pattern observed by optical microscopy.

Fig. 6.
Fig. 6.

Processed area inside the glass observed by optical microscopy. (a) Top view and (b) side view.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ fb = fb Δ λ λ ,
Z m f fb fb ( 1 f fb 1 1 x / fb ) ,
y f fb M ( 1 1 x / fb ) ,
Δ Z m f 2 fb 1 ( 1 x / fb ) 2 Δ λ λ + Δ f ,
Δ y Mf fb ( 1 + x / fb ( 1 x / fb ) 2 ) Δλ λ .
f 2 fb 1 ( 1 x / fb ) 2 Δ λ λ ,

Metrics