Abstract

Proposed and demonstrated is a minimally invasive optical beam profiler using a non-pixelated liquid crystal spatial light modulator. The profiler features high detection sensitivity in the visible band, high 50 lines/mm spatial resolution, beam observation zone 100 % fill factor and magnification flexibility, and video rate operations. Applications for this beam profiler includes plug and test beam measurements with minimal interruptions and feedback effects introduced into the optical beam system under test.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Bolton, �??Give your laser beam a checkup,�?? Photonics Spectra Magazine 36, 107 (2002)
  2. L. Green, �??Performance monitoring saves time and money,�?? Laser Focus World Magazine, 71, June 2002
  3. G. Brost, P. D. Horn, and A. Abtahi, �??Convenient spatial profiling of pulsed laser beams,�?? Appl. Opt. 24, 38 (1985)
    [CrossRef] [PubMed]
  4. J. Soto, M. Rendn, and M.Martn, �??Experimental demonstration of tomographic slit technique for measurement of arbitrary intensity profiles of light beams,�?? Applied Optics 36, 7450-7454 (1997)
    [CrossRef]
  5. D. W. Peterman, J. M. Fleischer, and D. C. Swain, �??Beam profiling aids fiber optics manufacturing,�?? Photonics Spectra Magazine 36, 2-77 (2002)
  6. J. M. Fleischer, �??Beam profiling monitors laser health,�?? Industrial Laser Solutions Magazine, Sept. 1999
  7. M. Mauck, �??Knife-edge profiling of Q-switched Nd:YAG laser beam and waist,�?? Appl. Opt. 18, 599- 600 (1979)
    [CrossRef] [PubMed]
  8. E. H. A. Granneman and M. J. van der Wiel, �??Laser beam waist determination by means of multiphoton ionization,�?? Rev. Sci. Instrum. 46, 332-334 (1975)
    [CrossRef]
  9. S. M. Sorscher and M. P. Klein, �??Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,�?? Rev. Sci. Instrum. 51, 98-102 (1980)
    [CrossRef]
  10. J. T. Knudtson and K. L. Ratzlaff, �??Laser beam spatial profile analysis using a two-dimensional photodiode array,�?? Rev. Sci. Instrum. 54, 856-860 (1983)
    [CrossRef]
  11. T. Baba, T. Arai, and A. Ono, �??Laser beam profile measurement by a thermographic technique,�?? Rev. Sci. Instrum. 57, 2739-2742 (1986)
    [CrossRef]
  12. S. Sumriddetchkajorn and N. A. Riza, �??MEMS-based digital optical beam profiler,�?? Appl. Opt. 41, 3506-3510 (2002)
    [CrossRef] [PubMed]
  13. N. A. Riza and M. J. Mughal, �??Optical power independent optical beam profiler,�?? Opt. Eng. 43, 793- 797 (2004)
    [CrossRef]
  14. 1999 Instruction Manual: PAL-SLM Model X7665, Hamamatsu Corp., Shimokanzo, Japan
  15. Yuji Kobayashi, Yasunori Igasaki, Narihiro Yoshida, Norihiro Fukuchi, Haruyoshi Toyoda, Tsutomu Hara, Ming H. Wu, "Compact high-efficiency electrically addressable phase-only spatial light modulator," Diffractive/Holographic Technologies and Spatial Light Modulators VII, Editor(s): Ivan Cindrich, Sing H. Lee, Richard L. Sutherland, Proceedings of SPIE 3951, 2000
    [CrossRef]

Appl. Opt. (3)

Applied Optics (1)

J. Soto, M. Rendn, and M.Martn, �??Experimental demonstration of tomographic slit technique for measurement of arbitrary intensity profiles of light beams,�?? Applied Optics 36, 7450-7454 (1997)
[CrossRef]

Industrial Laser Solutions Magazine (1)

J. M. Fleischer, �??Beam profiling monitors laser health,�?? Industrial Laser Solutions Magazine, Sept. 1999

Laser Focus World Magazine (1)

L. Green, �??Performance monitoring saves time and money,�?? Laser Focus World Magazine, 71, June 2002

Opt. Eng. (1)

N. A. Riza and M. J. Mughal, �??Optical power independent optical beam profiler,�?? Opt. Eng. 43, 793- 797 (2004)
[CrossRef]

Photonics Spectra Magazine (2)

D. W. Peterman, J. M. Fleischer, and D. C. Swain, �??Beam profiling aids fiber optics manufacturing,�?? Photonics Spectra Magazine 36, 2-77 (2002)

R. Bolton, �??Give your laser beam a checkup,�?? Photonics Spectra Magazine 36, 107 (2002)

Proceedings of SPIE (1)

Yuji Kobayashi, Yasunori Igasaki, Narihiro Yoshida, Norihiro Fukuchi, Haruyoshi Toyoda, Tsutomu Hara, Ming H. Wu, "Compact high-efficiency electrically addressable phase-only spatial light modulator," Diffractive/Holographic Technologies and Spatial Light Modulators VII, Editor(s): Ivan Cindrich, Sing H. Lee, Richard L. Sutherland, Proceedings of SPIE 3951, 2000
[CrossRef]

Rev. Sci. Instrum. (4)

E. H. A. Granneman and M. J. van der Wiel, �??Laser beam waist determination by means of multiphoton ionization,�?? Rev. Sci. Instrum. 46, 332-334 (1975)
[CrossRef]

S. M. Sorscher and M. P. Klein, �??Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,�?? Rev. Sci. Instrum. 51, 98-102 (1980)
[CrossRef]

J. T. Knudtson and K. L. Ratzlaff, �??Laser beam spatial profile analysis using a two-dimensional photodiode array,�?? Rev. Sci. Instrum. 54, 856-860 (1983)
[CrossRef]

T. Baba, T. Arai, and A. Ono, �??Laser beam profile measurement by a thermographic technique,�?? Rev. Sci. Instrum. 57, 2739-2742 (1986)
[CrossRef]

Other (1)

1999 Instruction Manual: PAL-SLM Model X7665, Hamamatsu Corp., Shimokanzo, Japan

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The proposed minimally invasive beam profiler design using an optically addressed SLM.

Fig. 2.
Fig. 2.

Schematic of the Hamamatsu PAL-SLM

Fig. 3.
Fig. 3.

Liquid Crystal Operation within the PAL LC-SLM in the Fig. 1 profiler.

Fig. 4.
Fig. 4.

Manufacturer Provided Experimental Phase Response at 633 nm Read Light versus 633 nm Write Light Intensity for Hamamatsu PAL LC SLM. [14]

Fig. 5.
Fig. 5.

Calculated Logarithmic 633 nm Read Light Relative Intensity vs. 633 nm Write Light Intensity Plot for the PAL LC SLM. The write light axis units are in μW/cm2 while the read light axis units are relative units scaled to 1.

Fig. 6.
Fig. 6.

Original Beam Intensity Pattern Measured by a CCD on the Write Side location of the SLM. Due to back-reflections, this image also contains two unwanted smaller versions of the original beam towards the top right corner of the image.

Fig. 7.
Fig. 7.

Experimentally produced and the post-processed power profile image of the test beam generated via the minimally invasive beam profiler instrument.

Fig. 8.
Fig. 8.

Read Light Direct Image from the Beam Profiler CCD.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( x , y ) = ( 4 π d / λ ) [ n eff ( x , y ) n o ] ,
I ( x , y ) = I 0 ( x , y ) sin 2 ( ϕ / 2 ) .

Metrics