Abstract

We demonstrate bio-medical imaging using a Terahertz quantum cascade laser. This new optoelectronic source of coherent Terahertz radiation allows building a compact imaging system with a large dynamic range and high spatial resolution. We obtain images of a rat brain section at 3.4 THz. Distinct regions of brain tissue rich in fat, proteins, and fluid-filled cavities are resolved showing the high contrast of Terahertz radiation for biological tissue. These results suggest that continuous-wave Terahertz imaging with a carefully chosen wavelength can provide valuable data on samples of biological origin; these data appear complementary to those obtained from white-light images.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent

Xueding Wang, Geng Ku, Malgorzata A. Wegiel, Darryl J. Bornhop, George Stoica, and Lihong V. Wang
Opt. Lett. 29(7) 730-732 (2004)

Terahertz imaging system based on a backward-wave oscillator

Adrian Dobroiu, Masatsugu Yamashita, Yuichi N. Ohshima, Yasuyuki Morita, Chiko Otani, and Kodo Kawase
Appl. Opt. 43(30) 5637-5646 (2004)

Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography

Geng Ku, Xueding Wang, Xueyi Xie, George Stoica, and Lihong V. Wang
Appl. Opt. 44(5) 770-775 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1992).
  2. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
    [Crossref]
  3. E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595–1607 (2004).
    [Crossref] [PubMed]
  4. K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002).
    [Crossref] [PubMed]
  5. P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
    [Crossref] [PubMed]
  6. T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
    [Crossref]
  7. J. Darmo, T. Müller, G. Straser, K. Unterrainer, and G. Tempea, “Terahertz emitter with intergrated semiconductor Bragg mirror,” Electron. Lett. 39, 460–462 (2003).
    [Crossref]
  8. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Physl. Lett. 67, 3844–3846 (1995).
    [Crossref]
  9. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
    [Crossref]
  10. S. Verghese, K. A. McIntosh, S. M. Duffy, and E. K. Duerr, “Continuous-wave Terahertz generation using photomixers,” in Terahertz Sources and Systems,R.E. Miler et al. eds. (Kluwer Academic Publishers, Netherlands, 2001) pp.145–165.
  11. P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys. 38, L1246–L1248 (1999).
    [Crossref]
  12. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
    [Crossref]
  13. R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
    [Crossref]
  14. G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Far-infrared (λ=78 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
    [Crossref]
  15. B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
    [Crossref]
  16. B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum cascade laser at λ=100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
    [Crossref]
  17. M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
    [Crossref]
  18. M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
    [Crossref] [PubMed]

2004 (2)

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595–1607 (2004).
[Crossref] [PubMed]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[Crossref]

2003 (5)

R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
[Crossref]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Far-infrared (λ=78 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[Crossref]

B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum cascade laser at λ=100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

J. Darmo, T. Müller, G. Straser, K. Unterrainer, and G. Tempea, “Terahertz emitter with intergrated semiconductor Bragg mirror,” Electron. Lett. 39, 460–462 (2003).
[Crossref]

2002 (3)

K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002).
[Crossref] [PubMed]

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[Crossref]

2001 (1)

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

2000 (1)

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

1999 (1)

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys. 38, L1246–L1248 (1999).
[Crossref]

1998 (1)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

1995 (2)

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Physl. Lett. 67, 3844–3846 (1995).
[Crossref]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

1992 (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1992).

Ajili, L.

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Far-infrared (λ=78 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[Crossref]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[Crossref]

Bauer, T.

K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002).
[Crossref] [PubMed]

Beere, H.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[Crossref]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Far-infrared (λ=78 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[Crossref]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[Crossref]

Beere, H.E.

R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
[Crossref]

Beltram, F.

R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
[Crossref]

Breede, M.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

Brown, E. R.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Physl. Lett. 67, 3844–3846 (1995).
[Crossref]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Callebaut, H.

B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum cascade laser at λ=100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Chang, F.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys. 38, L1246–L1248 (1999).
[Crossref]

Cole, B. E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595–1607 (2004).
[Crossref] [PubMed]

Czasch, S.

K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002).
[Crossref] [PubMed]

Darmo, J.

J. Darmo, T. Müller, G. Straser, K. Unterrainer, and G. Tempea, “Terahertz emitter with intergrated semiconductor Bragg mirror,” Electron. Lett. 39, 460–462 (2003).
[Crossref]

Davies, A. G.

R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
[Crossref]

Davies, G.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[Crossref]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Far-infrared (λ=78 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[Crossref]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[Crossref]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

Dhillon, S. S.

R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
[Crossref]

DiNatale, W. F.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Physl. Lett. 67, 3844–3846 (1995).
[Crossref]

Donhuijsen, K.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Duerr, E. K.

S. Verghese, K. A. McIntosh, S. M. Duffy, and E. K. Duerr, “Continuous-wave Terahertz generation using photomixers,” in Terahertz Sources and Systems,R.E. Miler et al. eds. (Kluwer Academic Publishers, Netherlands, 2001) pp.145–165.

Duffy, S. M.

S. Verghese, K. A. McIntosh, S. M. Duffy, and E. K. Duerr, “Continuous-wave Terahertz generation using photomixers,” in Terahertz Sources and Systems,R.E. Miler et al. eds. (Kluwer Academic Publishers, Netherlands, 2001) pp.145–165.

Faist, J.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[Crossref]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Far-infrared (λ=78 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[Crossref]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[Crossref]

Felber, S.

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Fitzgerald, A. J.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595–1607 (2004).
[Crossref] [PubMed]

Graf, M.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[Crossref]

Gu, P.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys. 38, L1246–L1248 (1999).
[Crossref]

Hein, G.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Hoffmann, S.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Hofmann, M.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Hofstetter, D.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[Crossref]

Hu, Q.

B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum cascade laser at λ=100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1992).

Kleine-Ostmann, T.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Knobloch, P.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Koch, M.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

Köhler, R.

R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
[Crossref]

Kolbitsch, C.

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Kremser, C.

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Kumar, S.

B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum cascade laser at λ=100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

Leonhardt, R.

K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002).
[Crossref] [PubMed]

Linfield, E.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[Crossref]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Far-infrared (λ=78 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[Crossref]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[Crossref]

Linfield, E. H.

R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
[Crossref]

Loffler, T.

K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002).
[Crossref] [PubMed]

Lyszczarz, T. M.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Physl. Lett. 67, 3844–3846 (1995).
[Crossref]

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Physl. Lett. 67, 3844–3846 (1995).
[Crossref]

S. Verghese, K. A. McIntosh, S. M. Duffy, and E. K. Duerr, “Continuous-wave Terahertz generation using photomixers,” in Terahertz Sources and Systems,R.E. Miler et al. eds. (Kluwer Academic Publishers, Netherlands, 2001) pp.145–165.

McMahon, O. B.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Physl. Lett. 67, 3844–3846 (1995).
[Crossref]

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1992).

Müller, T.

J. Darmo, T. Müller, G. Straser, K. Unterrainer, and G. Tempea, “Terahertz emitter with intergrated semiconductor Bragg mirror,” Electron. Lett. 39, 460–462 (2003).
[Crossref]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Physl. Lett. 67, 3844–3846 (1995).
[Crossref]

Nuss, M. C.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1992).

Pan, C.-L.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys. 38, L1246–L1248 (1999).
[Crossref]

Pepper, M.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595–1607 (2004).
[Crossref] [PubMed]

Pickwell, E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595–1607 (2004).
[Crossref] [PubMed]

Pierz, K.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Poewe, W.

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Puschban, Z.

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Quast, H.

K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002).
[Crossref] [PubMed]

Rehberg, E.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

Reno, J. L.

B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum cascade laser at λ=100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

Ritchie, D.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[Crossref]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Far-infrared (λ=78 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[Crossref]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[Crossref]

Ritchie, D. A.

R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
[Crossref]

Rochat, M.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[Crossref]

Roskos, H. G.

K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002).
[Crossref] [PubMed]

Sakai, K.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys. 38, L1246–L1248 (1999).
[Crossref]

Scalari, G.

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[Crossref]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Far-infrared (λ=78 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[Crossref]

Scherfler, C.

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Schildknecht, C.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

Schocke, M.F.

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Seppi, K.

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Siebert, K. J.

K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002).
[Crossref] [PubMed]

Sirtori, C.

R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
[Crossref]

Sperling, M.

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

Straser, G.

J. Darmo, T. Müller, G. Straser, K. Unterrainer, and G. Tempea, “Terahertz emitter with intergrated semiconductor Bragg mirror,” Electron. Lett. 39, 460–462 (2003).
[Crossref]

Tani, M.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys. 38, L1246–L1248 (1999).
[Crossref]

Tempea, G.

J. Darmo, T. Müller, G. Straser, K. Unterrainer, and G. Tempea, “Terahertz emitter with intergrated semiconductor Bragg mirror,” Electron. Lett. 39, 460–462 (2003).
[Crossref]

Terdicucci, A.

R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
[Crossref]

Thomson, M.

K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002).
[Crossref] [PubMed]

Unterrainer, K.

J. Darmo, T. Müller, G. Straser, K. Unterrainer, and G. Tempea, “Terahertz emitter with intergrated semiconductor Bragg mirror,” Electron. Lett. 39, 460–462 (2003).
[Crossref]

Verghese, S.

S. Verghese, K. A. McIntosh, S. M. Duffy, and E. K. Duerr, “Continuous-wave Terahertz generation using photomixers,” in Terahertz Sources and Systems,R.E. Miler et al. eds. (Kluwer Academic Publishers, Netherlands, 2001) pp.145–165.

Waldner, R.

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Wallace, V. P.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595–1607 (2004).
[Crossref] [PubMed]

Wenning, G.K.

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Willenberg, H.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[Crossref]

Williams, B.S.

B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum cascade laser at λ=100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

Zschiegner, F.

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[Crossref]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[Crossref]

R. Köhler, A. Terdicucci, F. Beltram, H.E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, S. S. Dhillon, and C. Sirtori, “High-performance continuous-wave operation of superlattice Terahertz quantum-cascade lasers,” Appl. Phys. Lett. 82, 1518–1520 (2003).
[Crossref]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Far-infrared (λ=78 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[Crossref]

B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003).
[Crossref]

B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum cascade laser at λ=100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[Crossref]

M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, “Terahertz range quantum well infrared photodetector,” Appl. Phys. Lett. 84, 475–477 (2004).
[Crossref]

Appl. Physl. Lett. (1)

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Physl. Lett. 67, 3844–3846 (1995).
[Crossref]

Electron. Lett. (2)

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[Crossref]

J. Darmo, T. Müller, G. Straser, K. Unterrainer, and G. Tempea, “Terahertz emitter with intergrated semiconductor Bragg mirror,” Electron. Lett. 39, 460–462 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1992).

Jpn. J. Appl. Phys. (1)

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys. 38, L1246–L1248 (1999).
[Crossref]

Neuroimage (1)

M.F. Schocke, R. Waldner, Z. Puschban, C. Kolbitsch, K. Seppi, C. Scherfler, C. Kremser, F. Zschiegner, S. Felber, W. Poewe, and G.K. Wenning, “Vivo Magnetic Resonance Imaging of Embryonic Neural Grafts in a Rat Model of Striatonigral Degeneration (Multiple System Atrophy),” Neuroimage 12, 209–218 (2000).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[Crossref]

Phys. Med. Biol. (3)

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49, 1595–1607 (2004).
[Crossref] [PubMed]

K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch, and H. G. Roskos, “All-optoelectronic continuous wave THz imaging for biomedical applications,” Phys. Med. Biol. 47, 3743–3748 (2002).
[Crossref] [PubMed]

P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein, and K. Pierz, “Medical THz imaging: an investigation of histo-pathological samples,” Phys. Med. Biol. 47, 3875–3884 (2002).
[Crossref] [PubMed]

Other (1)

S. Verghese, K. A. McIntosh, S. M. Duffy, and E. K. Duerr, “Continuous-wave Terahertz generation using photomixers,” in Terahertz Sources and Systems,R.E. Miler et al. eds. (Kluwer Academic Publishers, Netherlands, 2001) pp.145–165.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Current-voltage and light-current characteristics of the THz-QC laser. The inset shows the spectrum of laser driven at current density of 0.4 and 0.5 kA/cm2.

Fig. 2.
Fig. 2.

Schematics of the imaging set-up with THz-QC laser.

Fig. 3.
Fig. 3.

Spatial resolution of the imaging setup of Fig. 2. The inset shows the THz signal modulation during scanning across the line test pattern with 1 and 0.75 mm wide stripes.

Fig. 4.
Fig. 4.

White-light (a,b) and THz (c,d) images of rat brain frontal sections. The samples are about 30 μm thick and fixed onto a gold-coated flat mirror. The pixel size is 200 μm x 200 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MD = I max I min I max + I min

Metrics