Abstract

This letter addresses a dye-doped planar cholesteric cell as a one-dimensional photonic crystal, which can be lased at the band edges of the photonic band gap. The effect of the composition of the material and the thickness of a cholesteric cell (CLC) on the lasing action, and the photo-control of the lasing frequency, are experimentally investigated. Adding a tunable chiral monomer (TCM) allows the CLC’s reflection band to be tuned by varying the intensity and/or exposure time of the UV curing light, enabling the lasing frequency of the CLC sample to be tuned.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton University Press, Princeton, NJ, 1995).
  2. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden,�??The photonic band edge laser: a new approach to gain enhancement,�?? J. Appl. Phys. 75, 1896 (1994).
    [CrossRef]
  3. V. I. Koop, B. Fan, H. K. Vithana, and A. Z. Genack, �??Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,�?? Opt. Lett. 23, 1707 (1998).
    [CrossRef]
  4. A.Munoz, P. Palffy-Muhoray, and B. Taheri, �??Ultraviolet lasing in cholesteric liquid crystals,�?? Opt. Lett. 26, 804(2001).
    [CrossRef]
  5. L. S. Goldberg and J. M. Schnur, �??Tunable internal-feedback liquid crystal laser,�?? U.S. patent 3,771,065 (Novemer 6, 1973).
  6. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri,�??Tunable mirrorless lasing inf cholesteric liquid crystalline elastomer,�?? Adv. Mater. 13, 1069 (2001).
    [CrossRef]
  7. M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino,�?? Mirrorless lasing in a dye-doped ferroelectric liquid crystal,�?? Adv. Mater. 14, 306(2002).
    [CrossRef]
  8. Seiichi Furumi, Shiyoshi Yokoyama, Akira Otomo, and Shinro Mashiko,�?? Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,�?? Appl. Phys. Lett. 82, 16(2003).
    [CrossRef]
  9. T. Matsui, R. Ozaki,�??Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,�?? Appl. Phys. Lett. 81, 3741 (2002).
    [CrossRef]
  10. J. Schmidtke, W. Stille,�??Laser emission in a dye doped cholesteric polymer network,�?? Adv. Mater. 14, 746 (2002).
    [CrossRef]
  11. L. M. Blinov and V. G. Chigrinov, Electrooptic effects in liquid crystal materials, (Springer-Verlag, New York, 1994), pp. 327.
  12. Jui-Hsiang Liu, Hung-Tsai Liu, and Fu-Ren Tsai,�??Preparation and characterization of polymer-dispersed liquid crystal films using poly(bornyl methacrylate),�?? Polymer International 42, 385(1997).
    [CrossRef]
  13. Jui-Hsiang Liu, Jen-Chieh Shih, Chih-Hung Shih, and Wei-Ting Chen, �??Preparation and characterization of copolymers containing (+)-bornyl mthacrylate and their racemate for positive-tone photoresist,�?? J. Appl. Polymer Sci. 81, 3538(2001).
    [CrossRef]
  14. Solladie, G., and Zimmermann, R. G .,�?? Liquid Crystals: A tool for studies on chirality,�?? Angew. Chem. int. Ed. Engl. 23, 348 (1984).
    [CrossRef]

Adv. Mater. (3)

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri,�??Tunable mirrorless lasing inf cholesteric liquid crystalline elastomer,�?? Adv. Mater. 13, 1069 (2001).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino,�?? Mirrorless lasing in a dye-doped ferroelectric liquid crystal,�?? Adv. Mater. 14, 306(2002).
[CrossRef]

J. Schmidtke, W. Stille,�??Laser emission in a dye doped cholesteric polymer network,�?? Adv. Mater. 14, 746 (2002).
[CrossRef]

Angew. Chem. int. Ed. Engl. (1)

Solladie, G., and Zimmermann, R. G .,�?? Liquid Crystals: A tool for studies on chirality,�?? Angew. Chem. int. Ed. Engl. 23, 348 (1984).
[CrossRef]

Appl. Phys. Lett. (2)

Seiichi Furumi, Shiyoshi Yokoyama, Akira Otomo, and Shinro Mashiko,�?? Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,�?? Appl. Phys. Lett. 82, 16(2003).
[CrossRef]

T. Matsui, R. Ozaki,�??Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,�?? Appl. Phys. Lett. 81, 3741 (2002).
[CrossRef]

J. Appl. Phys. (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden,�??The photonic band edge laser: a new approach to gain enhancement,�?? J. Appl. Phys. 75, 1896 (1994).
[CrossRef]

J. Appl. Polymer Sci. (1)

Jui-Hsiang Liu, Jen-Chieh Shih, Chih-Hung Shih, and Wei-Ting Chen, �??Preparation and characterization of copolymers containing (+)-bornyl mthacrylate and their racemate for positive-tone photoresist,�?? J. Appl. Polymer Sci. 81, 3538(2001).
[CrossRef]

Opt. Lett. (2)

Polymer International (1)

Jui-Hsiang Liu, Hung-Tsai Liu, and Fu-Ren Tsai,�??Preparation and characterization of polymer-dispersed liquid crystal films using poly(bornyl methacrylate),�?? Polymer International 42, 385(1997).
[CrossRef]

Other (3)

L. S. Goldberg and J. M. Schnur, �??Tunable internal-feedback liquid crystal laser,�?? U.S. patent 3,771,065 (Novemer 6, 1973).

L. M. Blinov and V. G. Chigrinov, Electrooptic effects in liquid crystal materials, (Springer-Verlag, New York, 1994), pp. 327.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton University Press, Princeton, NJ, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Lasing pattern of the dye-doped cholesteric liquid crystal cell stabilized with polymer. The left green light is the pumping light.

Fig. 2.
Fig. 2.

Measured reflection bands of CLCs with different chiral concentrations.

Fig. 3.
Fig. 3.

Variations of the lasing wavelength with the concentration of the chiral material and the polymer added to the sample. The pumping source was the SHG of a mode-locked Nd:YAG laser pulse with an intensity of ~1μJ.

Fig. 4.
Fig. 4.

Reflection bands of CLCs with different cell gaps.

Fig. 5.
Fig. 5.

Wedge cell: variance of pitch at various thicknesses.

Fig. 6.
Fig. 6.

Lasing spectrum from the wedge CLC cell at various cell gaps; (a) 2μm, (b) 3μm and (c) 10μm.

Fig. 7.
Fig. 7.

Variation of the lasing wavelength from a CLC cell to which TCM has been added, with duration of UV irradiation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

p = 1 β 0 . c 0 + β TCM . c TCM ,

Metrics