Abstract

Multiple cw visible lasers at wavelengths ranging from 550nm to 625nm were generated by intracavity frequency sum-mixing of a cascading Raman fiber laser in a type-I noncritically phase-matched lithium triborate crystal. The phase matching conditions for individual wavelengths were realized by tuning the temperature of the lithium triborate crystal.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. M. Kretschmann, F. Heine, G. Huber and T. Halldorsson, "All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer," Opt. Lett. 22, 1461-1463 (1997).
    [CrossRef]
  2. H. Watanabe, T. Omatsu and M. Tateda, "Efficient self-pumped phase conjugation with a loop geometry in a Rhodamine-6G solid dye laser amplifier," Opt. Express 11, 176-180 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-176">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-176</a>.
    [CrossRef] [PubMed]
  3. H. M. Pask and J. A. Piper, "Efficient all-solid-state yellow laser source producing 1.2-W average power," Opt. Lett. 24, 1490-1492 (1999).
    [CrossRef]
  4. S. M. Giffin, G. W. Baxter, L. T. McKinnie and V. V. Ter-Mikirtychev, "Efficient 550-600-nm tunable laser based on noncritically phase-matched frequency doubling of room-temperature LiF:F-2 in lithium triborate," Appl. Opt. 41, 4331-4335 (2002).
    [CrossRef] [PubMed]
  5. J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T.Moore and J. M. Telle, "20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers," Opt. Lett. 28, 2219-2221 (2003).
    [CrossRef] [PubMed]
  6. G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang and N. B. Ming, "Simultaneously efficient blue and red light generations in a periodically poled LiTaO3," Appl. Phys. Lett. 78, 3006-3008 (2001).
    [CrossRef]
  7. J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu and N. B. Ming, "Simultaneous cw red, yellow, and green light generation, "traffic signal lights," by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3," Appl. Phys. Lett. 83, 228-230 (2003).
    [CrossRef]
  8. R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper and T. Mckay, "Efficient, all-solid-state, Raman laser in the yellow,orange and red," Opt. Express 12, 785-790 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-785">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-785</a>.
    [CrossRef] [PubMed]
  9. H. Moosmuller and J. D. Vance, "Sum-frequency generation of continuous-wave sodium D2 resonant radiation," Opt. Lett. 22, 1135-1137 (1997).
    [CrossRef] [PubMed]
  10. P. W. Milonni, H. Fearn, J. M. Telle and R. Q. Fugate, "Theory of continuous-wave excitation of the sodium beacon," J. Opt. Soc. Am. A 16, 2555-2566 (1999).
    [CrossRef]
  11. F. L. Galeener, J. C. Mikkelsen, R. H. Geils and W. J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5," Appl. Phys. Lett. 32, 34-36 (1978).
    [CrossRef]
  12. S. Huang, Y. Feng, A. Shirakawa and K. Ueda, "Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser," Jpn. J. Appl. Phys. 42, L1439-L1441 (2003).
    [CrossRef]
  13. K. Kato, "Temperature-Tuned 90 Phase-Matching Properties of LiB3O5," IEEE J. Quantum Electron. 30, 2950-2952 (1994).
    [CrossRef]
  14. SNLO, free software for modeling nonlinear frequency conversion processes in nonlinear crystals, <a href="http://www.sandia.gov/imrl/X1118/xxtal.htm">http://www.sandia.gov/imrl/X1118/xxtal.htm</a>.
  15. G. D. Boyd and D. A. Kleinman, "Parametric Interaction of Focused Gaussian Light Beams," J. Appl. Phys. 39, 3597-3639 (1968).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang and N. B. Ming, "Simultaneously efficient blue and red light generations in a periodically poled LiTaO3," Appl. Phys. Lett. 78, 3006-3008 (2001).
[CrossRef]

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu and N. B. Ming, "Simultaneous cw red, yellow, and green light generation, "traffic signal lights," by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3," Appl. Phys. Lett. 83, 228-230 (2003).
[CrossRef]

F. L. Galeener, J. C. Mikkelsen, R. H. Geils and W. J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5," Appl. Phys. Lett. 32, 34-36 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kato, "Temperature-Tuned 90 Phase-Matching Properties of LiB3O5," IEEE J. Quantum Electron. 30, 2950-2952 (1994).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, "Parametric Interaction of Focused Gaussian Light Beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Huang, Y. Feng, A. Shirakawa and K. Ueda, "Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser," Jpn. J. Appl. Phys. 42, L1439-L1441 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Sandia National Labs (1)

SNLO, free software for modeling nonlinear frequency conversion processes in nonlinear crystals, <a href="http://www.sandia.gov/imrl/X1118/xxtal.htm">http://www.sandia.gov/imrl/X1118/xxtal.htm</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. Cavity is formed by FBG, M1. M2 is a dichroic mirror through which visible lights escape from the cavity. Inset is a picture of dispersed visible emission (from left to right, 569nm, 589nm, and 606.5nm) when temperature is tuned to near 30°C, where all frequency sum-mixing channels are off the phase-match condition so that the intensities of these emissions were comparable.

Fig. 2
Fig. 2

(left) The emission spectra at the near-infrared wavelength range at pump power of 5.6W and 11W, respectively. (right) typical emission spectra at visible wavelength range when the temperature of LBO crystal was tuned to 70°C (dash line), 40°C (solid line), and 20°C (dot line), which correspond to phase matching condition for 569nm, 589nm and 606.5nm generation, respectively.

Fig. 3.
Fig. 3.

The output power at 569nm, 589nm, and 606.5nm as a function of the pump power.

Tables (1)

Tables Icon

Table 1 Calculated phase matching temperature and effective nonlinear coefficient for all frequency sum-mixing channels

Metrics