Abstract

Multiple cw visible lasers at wavelengths ranging from 550nm to 625nm were generated by intracavity frequency sum-mixing of a cascading Raman fiber laser in a type-I noncritically phase-matched lithium triborate crystal. The phase matching conditions for individual wavelengths were realized by tuning the temperature of the lithium triborate crystal.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave Watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths

Jonas Jakutis-Neto, Jipeng Lin, Niklaus Ursus Wetter, and Helen Pask
Opt. Express 20(9) 9841-9850 (2012)

Multiwavelength green-yellow laser based on a Nd:YAG laser with nonlinear frequency conversion in a LBO crystal

Zhichao Wang, Feng Yang, Shiyong Xie, Yiting Xu, Jialin Xu, Yong Bo, Qinjun Peng, Jingyuan Zhang, Dafu Cui, and Zuyan Xu
Appl. Opt. 51(18) 4196-4200 (2012)

Discretely tunable, all-solid-state laser in the green, yellow, and red

Richard P. Mildren, Helen M. Pask, Hamish Ogilvy, and James A. Piper
Opt. Lett. 30(12) 1500-1502 (2005)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Kretschmann, F. Heine, G. Huber, and T. Halldorsson, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer,” Opt. Lett. 22, 1461~1463 (1997).
    [Crossref]
  2. H. Watanabe, T. Omatsu, and M. Tateda, “Efficient self-pumped phase conjugation with a loop geometry in a Rhodamine-6G solid dye laser amplifier,” Opt. Express 11, 176~180 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-176
    [Crossref] [PubMed]
  3. H. M. Pask and J. A. Piper, “Efficient all-solid-state yellow laser source producing 1.2-W average power,” Opt. Lett. 24, 1490~1492 (1999).
    [Crossref]
  4. S. M. Giffin, G. W. Baxter, L. T. McKinnie, and V. V. Ter-Mikirtychev, “Efficient 550-600-nm tunable laser based on noncritically phase-matched frequency doubling of room-temperature LiF:F2− in lithium triborate,” Appl. Opt. 41, 4331~4335 (2002).
    [Crossref] [PubMed]
  5. J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,” Opt. Lett. 28, 2219~2221 (2003).
    [Crossref] [PubMed]
  6. G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “SImultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006~3008 (2001).
    [Crossref]
  7. J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
    [Crossref]
  8. R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, and T. Mckay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12, 785~790 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-785
    [Crossref] [PubMed]
  9. H. Moosmuller and J. D. Vance, “Sum-frequency generation of continuous-wave sodium D2 resonant radiation,” Opt. Lett. 22, 1135~1137 (1997).
    [Crossref] [PubMed]
  10. P. W. Milonni, H. Fearn, J. M. Telle, and R. Q. Fugate, “Theory of continuous-wave excitation of the sodium beacon,” J. Opt. Soc. Am. A 16, 2555~2566 (1999).
    [Crossref]
  11. F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34~36 (1978).
    [Crossref]
  12. S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L1439~L1441 (2003).
    [Crossref]
  13. K. Kato, “Temperature-Tuned 90 Phase-Matching Properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950~2952 (1994).
    [Crossref]
  14. SNLO, free software for modeling nonlinear frequency conversion processes in nonlinear crystals, http://www.sandia.gov/imrl/X1118/xxtal.htm
  15. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, 3597~3639 (1968).
    [Crossref]

2004 (1)

2003 (4)

J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,” Opt. Lett. 28, 2219~2221 (2003).
[Crossref] [PubMed]

H. Watanabe, T. Omatsu, and M. Tateda, “Efficient self-pumped phase conjugation with a loop geometry in a Rhodamine-6G solid dye laser amplifier,” Opt. Express 11, 176~180 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-176
[Crossref] [PubMed]

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L1439~L1441 (2003).
[Crossref]

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
[Crossref]

2002 (1)

2001 (1)

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “SImultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006~3008 (2001).
[Crossref]

1999 (2)

1997 (2)

1994 (1)

K. Kato, “Temperature-Tuned 90 Phase-Matching Properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950~2952 (1994).
[Crossref]

1978 (1)

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34~36 (1978).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, 3597~3639 (1968).
[Crossref]

Baxter, G. W.

Bienfang, J. C.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, 3597~3639 (1968).
[Crossref]

Convery, M.

Denman, C. A.

Du, J.

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
[Crossref]

Fearn, H.

Feng, Y.

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L1439~L1441 (2003).
[Crossref]

Fugate, R. Q.

Galeener, F. L.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34~36 (1978).
[Crossref]

Geils, R. H.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34~36 (1978).
[Crossref]

Giffin, S. M.

Grime, B. W.

Halldorsson, T.

He, J. L.

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “SImultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006~3008 (2001).
[Crossref]

He, J.-L.

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
[Crossref]

Heine, F.

Hillman, P. D.

Huang, S.

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L1439~L1441 (2003).
[Crossref]

Huber, G.

Kato, K.

K. Kato, “Temperature-Tuned 90 Phase-Matching Properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950~2952 (1994).
[Crossref]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, 3597~3639 (1968).
[Crossref]

Kretschmann, H. M.

Liao, J.

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
[Crossref]

Liu, H.

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
[Crossref]

Liu, Z. W.

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “SImultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006~3008 (2001).
[Crossref]

Luo, G. Z.

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “SImultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006~3008 (2001).
[Crossref]

Mckay, T.

McKinnie, L. T.

Mikkelsen, J. C.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34~36 (1978).
[Crossref]

Mildren, R. P.

Milonni, P. W.

Ming, N. B.

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
[Crossref]

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “SImultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006~3008 (2001).
[Crossref]

Moore, G. T.

Moosmuller, H.

Mosby, W. J.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34~36 (1978).
[Crossref]

Omatsu, T.

Pask, H. M.

Piper, J. A.

Shirakawa, A.

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L1439~L1441 (2003).
[Crossref]

Tateda, M.

Telle, J. M.

Ter-Mikirtychev, V. V.

Ueda, K.

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L1439~L1441 (2003).
[Crossref]

Vance, J. D.

Wang, H. T.

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “SImultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006~3008 (2001).
[Crossref]

Wang, H.-T.

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
[Crossref]

Watanabe, H.

Xu, F.

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
[Crossref]

Zhang, C.

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “SImultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006~3008 (2001).
[Crossref]

Zhu, S. N.

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
[Crossref]

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “SImultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006~3008 (2001).
[Crossref]

Zhu, Y. Y.

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
[Crossref]

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “SImultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006~3008 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “SImultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006~3008 (2001).
[Crossref]

J.-L. He, J. Liao, H. Liu, J. Du, F. Xu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228~230 (2003).
[Crossref]

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34~36 (1978).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Kato, “Temperature-Tuned 90 Phase-Matching Properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950~2952 (1994).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39, 3597~3639 (1968).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L1439~L1441 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Other (1)

SNLO, free software for modeling nonlinear frequency conversion processes in nonlinear crystals, http://www.sandia.gov/imrl/X1118/xxtal.htm

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. Cavity is formed by FBG, M1. M2 is a dichroic mirror through which visible lights escape from the cavity. Inset is a picture of dispersed visible emission (from left to right, 569nm, 589nm, and 606.5nm) when temperature is tuned to near 30°C, where all frequency sum-mixing channels are off the phase-match condition so that the intensities of these emissions were comparable.

Fig. 2
Fig. 2

(left) The emission spectra at the near-infrared wavelength range at pump power of 5.6W and 11W, respectively. (right) typical emission spectra at visible wavelength range when the temperature of LBO crystal was tuned to 70°C (dash line), 40°C (solid line), and 20°C (dot line), which correspond to phase matching condition for 569nm, 589nm and 606.5nm generation, respectively.

Fig. 3.
Fig. 3.

The output power at 569nm, 589nm, and 606.5nm as a function of the pump power.

Tables (1)

Tables Icon

Table 1 Calculated phase matching temperature and effective nonlinear coefficient for all frequency sum-mixing channels

Metrics