Abstract

In-situ monitoring of domain reversal in congruent lithium niobate by a digital holographic technique is described. While the ferroelectric polarization is reversed by electric field poling, the two-dimensional distribution of the phase shift, due mainly to the linear electro-optic and piezoelectric effects, is measured and visualized. Digital holography is used to reconstruct both amplitude and phase of the wavefield transmitted by the sample to reveal the phase shift induced by adjacent reversed domains during the poling. The resulting movies of both amplitude and phase maps, for in-situ visualization of domain pattern formation, are shown. The possibility of using the technique as tool for monitoring in real-time the periodic poling of patterned samples is discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R.L. Byer, �??Nonlinear Optics and Solid-State Lasers:2000,�?? IEEE J. Select. Topics Quantum Electron. 6, 911-930 (2000).
    [CrossRef]
  2. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, L. Hollberg, �??Saturated-absorption spectroscopy with low-power difference-frequency radiation,�?? Opt. Lett. 25, 350-352 (2000).
    [CrossRef]
  3. N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson and D.C. Hanna, �??Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,�?? Phys. Rev. Lett. 84, 4345-4348 (2000).
    [CrossRef] [PubMed]
  4. S.J. Holmgren, V. Pasiskevicius, S. Wang and F. Laurell, �??Three-dimensional characterization of the effective second-order nonlinearity in periodically poled crystals,�?? Opt. Lett. 28, 1555-1557 (2003).
    [CrossRef] [PubMed]
  5. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435-436 (1993).
    [CrossRef]
  6. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale and M. Chiarini, �??Investigation on reversed domain structures in Lithium Niobate crystals patterned by Interference Lithography,�?? Opt. Express 11, 392-405 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-392">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-392</a>
    [CrossRef] [PubMed]
  7. M.J. Missey, S. Russell, V. Dominic, R.G. Batchko, K.L. Schepler, �??Real-time visualization of domain formation in periodically poled lithium niobate,�?? Opt. Express 6, 186-195 (2000).
    [CrossRef] [PubMed]
  8. V. Gopalan and T.E. Mitchell, �??Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals,�?? J. Appl. Phys. 83, 941-954 (1998).
    [CrossRef]
  9. K. Nassau, H.J. Levinstein and G.M. Loiacono, �??Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,�?? J. Phys. Chem. Solids 27, 983-988 (1966).
    [CrossRef]
  10. V. Gopalan and M.C. Gupta, �??Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,�?? J. Appl. Phys. 80, 6099-6106 (1996).
    [CrossRef]
  11. M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, H. Fuchs, �??Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions, �?? Appl. Phys. B 67, 593-599 (1998).
    [CrossRef]
  12. T.J. Yang, V. Gopalan, P.J. Swart and U. Mohideen, �??Direct Observation of Pinning and Bowing of a Single Ferroelectric Domain Wall,�?? Phys. Rev. Lett. 82, 4106-4109 (1999).
    [CrossRef]
  13. J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson and F. Laurell, �??Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,�?? Appl. Phys. Lett. 80, 1622-1624 (2002).
    [CrossRef]
  14. M.C. Wengler, M. Müller, E. Soergel, K. Buse, �??Poling dynamics of lithium niobate crystals,�?? Appl. Phys. B 76, 393-396 (2003).
    [CrossRef]
  15. V. Gopalan, S.S.A. Gerstl, A. Itagi, T.E. Mitchell, Q.X. Jia, T.E. Schlesinger and D.D. Stancil, �??Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,�?? J. Appl. Phys. 86, 1638-1646 (1999).
    [CrossRef]
  16. V. Gopalan, T.E. Mitchell, �??In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,�?? J. Appl. Phys. 85, 2304-2311 (1999).
    [CrossRef]
  17. V. Goapalan, Q.X.Jia, T.E. Mitchell, �??In situ observation of 180° domain kinetics in congruent LiNbO3 crystals,�?? Appl. Phys. Lett. 75, 2482-2484 (1999).
    [CrossRef]
  18. S. Kim, V. Gopalan, K. Kitamura and Y. Furukawa, �??Domain reversal and nonstoichiometry in lithium tantalate,�?? J. Appl. Phys. 90, 2949-2963 (2001).
    [CrossRef]
  19. M. Müller, E. Soergel, and K. Buse, �??Visualization of ferroelectric domains with coherent light,�?? Opt. Lett. 28, 2515-2517 (2003).
    [CrossRef] [PubMed]
  20. U.Schanrs and W. Jüptner �??Digital recording and numerical reconstruction of holograms,�?? Meas. Sci. Tech. 13, R85-R101 (2002).
    [CrossRef]
  21. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini and R. Meucci, �??Whole optical wavefields reconstruction by digital holography,�?? Opt. Expr. 9, 294-302 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294</a>
    [CrossRef]
  22. S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, �??Correct-image reconstruction in the presence of severe anamorphism by means of digital holography,�?? Opt. Lett. 26, 974-976 (2001).
    [CrossRef]
  23. S. De Nicola, P. Ferraro, A. Finizio and G. Pierattini, �??Reflective grating interferometer: a folded reversal wave-front interferometer,�?? Appl. Opt. 38, 4845-4849 (1999).
    [CrossRef]
  24. M. Jazbinšek, M. Zgonik, �??Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,�?? Appl. Phys. B 74, 407-414 (2002).
    [CrossRef]
  25. D.J. Whitehouse, �??Review article: surface metrology,�?? Meas. Sci. Technol. 8, 955-972 (1997).
    [CrossRef]
  26. S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, �??Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,�?? Opt. Las. Eng. 37, 331-340 (2002).
    [CrossRef]
  27. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, G. Pierattini, �??Controlling image size as a function of distance and wavelength in Fresnel transform reconstruction of digital holograms,�?? Opt. Lett., (to be published).
  28. P. Ferraro, S. de Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, �??Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,�?? Appl. Opt. 42, 1938-1946 (2003).
    [CrossRef] [PubMed]
  29. V. Gopalan and M.C. Gupta, �??Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence,�?? Appl. Phys. Lett. 68, 888-890 (1996).
    [CrossRef]
  30. T.J. Yang, U. Mohideen, M.C. Gupta, �??Near-field scanning optical microscopy of ferroelectric domain walls,�?? Appl. Phys. Lett. 71, 1960-1962 (1997).
    [CrossRef]
  31. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, �??Polarization imaging by use of digital holography,�?? Appl. Opt. 41, 27-37 (2002).
    [CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

M. Jazbinšek, M. Zgonik, �??Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,�?? Appl. Phys. B 74, 407-414 (2002).
[CrossRef]

M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, H. Fuchs, �??Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions, �?? Appl. Phys. B 67, 593-599 (1998).
[CrossRef]

M.C. Wengler, M. Müller, E. Soergel, K. Buse, �??Poling dynamics of lithium niobate crystals,�?? Appl. Phys. B 76, 393-396 (2003).
[CrossRef]

Appl. Phys. Lett.

V. Goapalan, Q.X.Jia, T.E. Mitchell, �??In situ observation of 180° domain kinetics in congruent LiNbO3 crystals,�?? Appl. Phys. Lett. 75, 2482-2484 (1999).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson and F. Laurell, �??Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,�?? Appl. Phys. Lett. 80, 1622-1624 (2002).
[CrossRef]

V. Gopalan and M.C. Gupta, �??Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence,�?? Appl. Phys. Lett. 68, 888-890 (1996).
[CrossRef]

T.J. Yang, U. Mohideen, M.C. Gupta, �??Near-field scanning optical microscopy of ferroelectric domain walls,�?? Appl. Phys. Lett. 71, 1960-1962 (1997).
[CrossRef]

IEEE J. Select. Topics Quantum Electron.

R.L. Byer, �??Nonlinear Optics and Solid-State Lasers:2000,�?? IEEE J. Select. Topics Quantum Electron. 6, 911-930 (2000).
[CrossRef]

J. Appl. Phys.

V. Gopalan and T.E. Mitchell, �??Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals,�?? J. Appl. Phys. 83, 941-954 (1998).
[CrossRef]

V. Gopalan and M.C. Gupta, �??Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,�?? J. Appl. Phys. 80, 6099-6106 (1996).
[CrossRef]

S. Kim, V. Gopalan, K. Kitamura and Y. Furukawa, �??Domain reversal and nonstoichiometry in lithium tantalate,�?? J. Appl. Phys. 90, 2949-2963 (2001).
[CrossRef]

V. Gopalan, S.S.A. Gerstl, A. Itagi, T.E. Mitchell, Q.X. Jia, T.E. Schlesinger and D.D. Stancil, �??Mobility of 180° domain walls in congruent LiTaO3 measured using real-time electro-optic imaging microscopy,�?? J. Appl. Phys. 86, 1638-1646 (1999).
[CrossRef]

V. Gopalan, T.E. Mitchell, �??In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,�?? J. Appl. Phys. 85, 2304-2311 (1999).
[CrossRef]

J. Phys. Chem. Solids

K. Nassau, H.J. Levinstein and G.M. Loiacono, �??Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,�?? J. Phys. Chem. Solids 27, 983-988 (1966).
[CrossRef]

Meas. Sci. Tech.

U.Schanrs and W. Jüptner �??Digital recording and numerical reconstruction of holograms,�?? Meas. Sci. Tech. 13, R85-R101 (2002).
[CrossRef]

Meas. Sci. Technol.

D.J. Whitehouse, �??Review article: surface metrology,�?? Meas. Sci. Technol. 8, 955-972 (1997).
[CrossRef]

Opt. Expr.

S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini and R. Meucci, �??Whole optical wavefields reconstruction by digital holography,�?? Opt. Expr. 9, 294-302 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294</a>
[CrossRef]

Opt. Express

Opt. Las. Eng.

S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, �??Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,�?? Opt. Las. Eng. 37, 331-340 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

T.J. Yang, V. Gopalan, P.J. Swart and U. Mohideen, �??Direct Observation of Pinning and Bowing of a Single Ferroelectric Domain Wall,�?? Phys. Rev. Lett. 82, 4106-4109 (1999).
[CrossRef]

N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson and D.C. Hanna, �??Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,�?? Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

Other

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, G. Pierattini, �??Controlling image size as a function of distance and wavelength in Fresnel transform reconstruction of digital holograms,�?? Opt. Lett., (to be published).

Supplementary Material (6)

» Media 1: MOV (2374 KB)     
» Media 2: MOV (1079 KB)     
» Media 3: MOV (2319 KB)     
» Media 4: MOV (2241 KB)     
» Media 5: MOV (1028 KB)     
» Media 6: MOV (2343 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic view of the sample holder and the electrical circuit used for domain inversion of LN crystal samples. The structure of the holder is inspired by that used by Wengler et al. [14]. SG signal generator; HVA high voltage amplifier (2000×); Rs series resistor (100) for current limitation; Rm monitoring resistor (10); HVP high voltage probe; OSC oscilloscope.

Fig. 2.
Fig. 2.

Picture of the sample holder. The external electrical circuit is integrated into the Plexiglas mount.

Fig. 3.
Fig. 3.

Schematic view of the RGI set-up. The laser source is a He-Ne laser emitting at λ=632.8nm. POM parabolic off-axis mirror; M mirror; RG reflective grating; SH sample holder.

Fig. 4.
Fig. 4.

Movie (2.4MB) of the interferograms recorded during the poling process. The video frames have a time resolution of 10frame/s.

Fig. 5.
Fig. 5.

Movies obtained by collecting the two-dimensional distribution images of the object wavefield a) amplitude (1.1MB) and b) wrapped phase (2.3MB) numerically reconstructed from the holograms recorded during the poling process. The reconstruction distance is d=540mm. The out of focus real image and the zero-order diffraction term are filtered out for clarity.

Fig. 6.
Fig. 6.

Movie (2.2MB) obtained by collecting the surface plot representations of the unwrapped phase shift distributions retrieved from the inner (60x60)pixel sized region of the interferograms recorded during the electric field poling process. It shows the evolution of the object wavefield phase shift profile during the formation of the reversed domain pattern.

Fig. 7.
Fig. 7.

Movies obtained by collecting the images of the reconstructed two-dimensional distributions of the object wavefield a) amplitude (1.0MB) and b) phase (2.3MB) in the case of a sample presenting a previously generated domain wall.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 2 [ 2 π λ Δ n d + 2 π λ ( n 0 n w ) Δ d ] = [ r 13 n 0 3 + 2 ( n 0 n w ) k 3 ] U
Γ ( ν , μ ) h ( ξ , η ) r ( ξ , η ) exp [ i π λ d ( ξ 2 cos α 2 + η 2 ) ] exp [ 2 i π ( ξ ν + η μ ) d ξ d η ]
Δ x ' = λ d N Δ ξ ; Δ y ' = λ d N Δ η
A ( x ' , y ' ) = abs [ Γ ( x ' , y ' ) ] ; ϕ ( x ' , y ' ) = arctan Im [ Γ ( x ' , y ' ) ] Re [ Γ ( x ' , y ' ) ]

Metrics