Abstract

In this paper, we present methods for beam splitting in a planar photonic crystal, where the light is self-guided as dictated by the self-collimation phenomenon. We present an analysis of a one-to-two and one-to-three beam splitter in a self-guiding photonic crystal lattice and validate our design and simulations with experimental results. Moreover, we present the first one-to-three splitter in a self-guiding planar photonic crystal. Additionally, we discuss the ability to tune the properties of these devices and present initial experimental results.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. John, S., "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  2. Yablonovitch, E., "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  3. Prather, D.W., A. Sharkawy, and S. Shouyuan, "Design and Applications of Photonic Crystals," in Handbook of Nanoscience, Engineering, and Technology, W.A. Goddard III, D.W. Brenner, S.E. Lyshevski, and G.J. Iafrate, eds. (CRC Press, Boca Raton, FL, 2002), pp 211-232.
  4. Villeneuve, P.R., S. Fan, and J.D. Joannopoulos, "Microcavities in Photonic Crystals: Mode Symmetry, Tunability, and Coupling Efficiency," Phys. Rev. B 54, 7837-7842 (1996).
    [CrossRef]
  5. Krauss, T.F., "Planar photonic crystal waveguide devices for integrated optics," Phys. Stat. Sol. (A) 197, 688-702 (2003).
    [CrossRef]
  6. Chutinan, A. and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000).
    [CrossRef]
  7. Sharkawy, A., S. Shi, and D.W. Prather, "Heterostructure photonic crystals: theory and applications," Appl. Opt. 41, 7245-7253 (2002).
    [CrossRef] [PubMed]
  8. Pustai, D., A. Sharkawy, S. Shi, G. Jin, J. Murakowski, and D.W. Prather, "Characterization and Analysis of Photonic Crystal Coupled Waveguides," Journal of Microlithography, Microfabrication, andMicrosystems 2, 292-299 (2003).
    [CrossRef]
  9. Cuesta, F., A. Griol, A. Martinez, and J. Marti, "Experimental demonstration of photonic crystal directional coupler at microwave frequencies," Electron. Lett. 39, 455-456 (2003).
    [CrossRef]
  10. Bayindir, M., B. Temelkuran, and E. Ozbay, "Photonic-Crystal-Based Beam Splitters," Appl. Phys. Lett. 77, 3902-3904 (2000).
    [CrossRef]
  11. Notomi, M., A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2002).
    [CrossRef]
  12. Baba, T., A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, "Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate," IEEE J. Quantum Electron. 38, 743-752 (2002).
    [CrossRef]
  13. Nordin, G.P., S. Kim, J.B. Cai, and J.H. Jiang, "Hybrid integration of conventional waveguide and photonic crystal structures," Opt. Express 10, 1334-1341 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1334">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1334</a>
    [CrossRef] [PubMed]
  14. Kim, S., G.P. Nordin, J. Cai, and J. Jiang, "Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure," Opt. Lett. 28, 2384-2386 (2003).
    [CrossRef] [PubMed]
  15. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
    [CrossRef]
  16. Witzens, J., M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," IEEE Journal of Selected Topics in Quantum Electronics 8, 1246-1257 (2002).
    [CrossRef]
  17. Prather, D.W., S. Shi, D.M. Pustai, A. Sharkawy, C. Chen, S. Venkataraman, J. Murakowski, and G. Schneider, "Dispersion-based optical routing in photonic crystals," Opt. Lett. 29, 50-52 (2004).
    [CrossRef] [PubMed]
  18. Chigrin, D.N., S. Enoch, C.M.S. Torres, and G. Tayeb, "Self-guiding in two-dimensional PhCs," Opt. Express 11, 1203 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1203">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1203
    [CrossRef] [PubMed]
  19. Witzens, J. and A. Scherer, "Efficient excitation of self-collimated beams and single Bloch modes in planar PhCs," J. Opt. Soc. Am. A 20, 935-940 (2003).
    [CrossRef]
  20. Chen, C., A. Sharkawy, D.M. Pustai, S. Shi, and D.W. Prather, "Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides," Opt. Express 11, 3153-3159 (2003).<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3153">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3153</a>
    [CrossRef] [PubMed]
  21. Shi, S., A. Sharkawy, C. Chen, D.M. Pustai, and D.W. Prather, "Dispersion-based beam splitter in photonic crystals," Opt. Lett. 29, 617-619 (2004).
    [CrossRef] [PubMed]
  22. Yu, X. and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett. 83, 3251-3253 (2003).
    [CrossRef]
  23. Johnson, S.G. and J.D. Joannopoulos, "Block-Iterative Frequency-Domain Methods for Maxwell's Equations in a Planewave Basis," Opt. Express 8, 173-180 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
    [CrossRef] [PubMed]
  24. Schuller, C., F. Klopf, J.P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
    [CrossRef]
  25. Busch, K. and S. John, "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
    [CrossRef]
  26. Leonard, S.W., J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
    [CrossRef]
  27. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Inc., Boston, MA, 1995).

Appl. Opt. (1)

Appl. Phys. Lett (1)

Yu, X. and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett. 83, 3251-3253 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

Schuller, C., F. Klopf, J.P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Bayindir, M., B. Temelkuran, and E. Ozbay, "Photonic-Crystal-Based Beam Splitters," Appl. Phys. Lett. 77, 3902-3904 (2000).
[CrossRef]

Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

Electron. Lett. (1)

Cuesta, F., A. Griol, A. Martinez, and J. Marti, "Experimental demonstration of photonic crystal directional coupler at microwave frequencies," Electron. Lett. 39, 455-456 (2003).
[CrossRef]

Handbook of Nanoscience, Engineering, an (1)

Prather, D.W., A. Sharkawy, and S. Shouyuan, "Design and Applications of Photonic Crystals," in Handbook of Nanoscience, Engineering, and Technology, W.A. Goddard III, D.W. Brenner, S.E. Lyshevski, and G.J. Iafrate, eds. (CRC Press, Boca Raton, FL, 2002), pp 211-232.

IEEE J. Quantum Electron (1)

Baba, T., A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, "Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate," IEEE J. Quantum Electron. 38, 743-752 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

Notomi, M., A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2002).
[CrossRef]

IEEE Journal of Selected Topics in Quant (1)

Witzens, J., M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," IEEE Journal of Selected Topics in Quantum Electronics 8, 1246-1257 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Journal of Microlithography, Microfabric (1)

Pustai, D., A. Sharkawy, S. Shi, G. Jin, J. Murakowski, and D.W. Prather, "Characterization and Analysis of Photonic Crystal Coupled Waveguides," Journal of Microlithography, Microfabrication, andMicrosystems 2, 292-299 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (3)

Chutinan, A. and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492 (2000).
[CrossRef]

Villeneuve, P.R., S. Fan, and J.D. Joannopoulos, "Microcavities in Photonic Crystals: Mode Symmetry, Tunability, and Coupling Efficiency," Phys. Rev. B 54, 7837-7842 (1996).
[CrossRef]

Leonard, S.W., J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Phys. Rev. Lett (1)

Busch, K. and S. John, "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

John, S., "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Yablonovitch, E., "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Phys. Stat. Sol. (A) (1)

Krauss, T.F., "Planar photonic crystal waveguide devices for integrated optics," Phys. Stat. Sol. (A) 197, 688-702 (2003).
[CrossRef]

Other (1)

Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Inc., Boston, MA, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Equi-frequency contours of the self-guiding PhC lattice at normalized frequencies between 0.22 and 0.32. (b) Dispersion diagram of the PhC lattice in the splitting region. By increasing the diameter of the air holes in the splitting region, a bandgap exists between normalized frequencies of 0.2801 and 0.2977.

Fig. 2.
Fig. 2.

Scanning electron micrograph of our one-to-two beam splitting device. The beam splitting structure consists of a self-guiding PhC lattice and beam splitting PhC lattice. The splitting PhC region is outlined by the red lines.

Fig. 3.
Fig. 3.

Percentage of output power vs. normalized frequency for port 1 and port 2 when the air hole radius of the splitting region is rs = 0.34a. A 3dB split is observed at a normalized frequency of 0.2982, which corresponds to a wavelength of 1482nm.

Fig. 4.
Fig. 4.

Top-down view of light propagation through the self-guiding and beam-splitter regions at a wavelength of (a) 1453nm, (b) 1482nm, and (c) 1503nm. (d) Light propagation through the same structure after liquid crystal infiltration at a wavelength of 1503nm.

Fig. 5.
Fig. 5.

(a) Dispersion diagram of triangular lattice with air hole of radius r=0.35a and (b) intensity distribution of light reflected by a splitting structure consisting of a three layer hexagonal lattice of air holes.

Fig. 6.
Fig. 6.

One-to-three beam-splitter for a self-guiding PhC. (a) Scanning electron micrograph of the one-to-three splitter fabricated in a silicon-on-insulator wafer. The magnification of the red-dashed box depicts the splitting region. (b) Steady -state field of a Finite-Difference Time-Domain method simulation at a frequency f = 0.26c/a. (c) Top-down view from an IR camera of light propagating through the fabricated device at a wavelength of λ=1600nm. The green arrow denotes the direction and location of the incident beam.

Metrics