Abstract

In this paper, we present methods for beam splitting in a planar photonic crystal, where the light is self-guided as dictated by the self-collimation phenomenon. We present an analysis of a one-to-two and one-to-three beam splitter in a self-guiding photonic crystal lattice and validate our design and simulations with experimental results. Moreover, we present the first one-to-three splitter in a self-guiding planar photonic crystal. Additionally, we discuss the ability to tune the properties of these devices and present initial experimental results.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion-based beam splitter in photonic crystals

Shouyuan Shi, Ahmed Sharkawy, Caihua Chen, David M. Pustai, and Dennis W. Prather
Opt. Lett. 29(6) 617-619 (2004)

Design of polarization beam splitter based on coupled rods in a square-lattice photonic crystal

Maurice Sesay, Xin Jin, and Zhengbiao Ouyang
J. Opt. Soc. Am. B 30(8) 2043-2047 (2013)

A polarizing beam splitter using negative refraction of photonic crystals

Vito Mocella, Principia Dardano, Luigi Moretti, and I. Rendina
Opt. Express 13(19) 7699-7707 (2005)

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  2. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  3. D.W. Prather, A. Sharkawy, and S. Shouyuan, “Design and Applications of Photonic Crystals,” in Handbook of Nanoscience, Engineering, and Technology,W.A. Goddard III, D.W. Brenner, S.E. Lyshevski, and G.J. Iafrate, eds. (CRC Press, Boca Raton, FL, 2002), pp 211–232.
  4. P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Microcavities in Photonic Crystals: Mode Symmetry, Tunability, and Coupling Efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
    [Crossref]
  5. T.F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol. (A) 197, 688–702 (2003).
    [Crossref]
  6. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62 , 4488–4492 (2000).
    [Crossref]
  7. A. Sharkawy, S. Shi, and D.W. Prather, “Heterostructure photonic crystals: theory and applications,” Appl. Opt. 41, 7245–7253 (2002).
    [Crossref] [PubMed]
  8. D. Pustai, A. Sharkawy, S. Shi, G. Jin, J. Murakowski, and D.W. Prather, “Characterization and Analysis of Photonic Crystal Coupled Waveguides,” Journal of Microlithography, Microfabrication, and Microsystems 2, 292–299 (2003).
    [Crossref]
  9. F. Cuesta, A. Griol, A. Martinez, and J. Marti, “Experimental demonstration of photonic crystal directional coupler at microwave frequencies,” Electron. Lett. 39, 455–456 (2003).
    [Crossref]
  10. M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-Crystal-Based Beam Splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
    [Crossref]
  11. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
    [Crossref]
  12. T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
    [Crossref]
  13. G.P. Nordin, S. Kim, J.B. Cai, and J.H. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express 10, 1334–1341 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1334
    [Crossref] [PubMed]
  14. S. Kim, G.P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384–2386 (2003).
    [Crossref] [PubMed]
  15. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
    [Crossref]
  16. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE Journal of Selected Topics in Quantum Electronics 8, 1246–1257 (2002).
    [Crossref]
  17. D.W. Prather, S. Shi, D.M. Pustai, A. Sharkawy, C. Chen, S. Venkataraman, J. Murakowski, and G. Schneider, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29, 50–52 (2004).
    [Crossref] [PubMed]
  18. D.N. Chigrin, S. Enoch, C.M.S. Torres, and G. Tayeb, “Self-guiding in two-dimensional PhCs,” Opt. Express 11, 1203 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1203
    [Crossref] [PubMed]
  19. J. Witzens and A. Scherer, “Efficient excitation of self-collimated beams and single Bloch modes in planar PhCs,” J. Opt. Soc. Am. A 20, 935–940 (2003).
    [Crossref]
  20. C. Chen, A. Sharkawy, D.M. Pustai, S. Shi, and D.W. Prather, “Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides,“ Opt. Express 11, 3153–3159 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3153
    [Crossref] [PubMed]
  21. S. Shi, A. Sharkawy, C. Chen, D.M. Pustai, and D.W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004).
    [Crossref] [PubMed]
  22. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
    [Crossref]
  23. S.G. Johnson and J.D. Joannopoulos, “Block-Iterative Frequency-Domain Methods for Maxwell’s Equations in a Planewave Basis,” Opt. Express 8, 173–180 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173
    [Crossref] [PubMed]
  24. C. Schuller, F. Klopf, J.P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
    [Crossref]
  25. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
    [Crossref]
  26. S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
    [Crossref]
  27. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Inc., Boston, MA, 1995).

2004 (2)

2003 (9)

J. Witzens and A. Scherer, “Efficient excitation of self-collimated beams and single Bloch modes in planar PhCs,” J. Opt. Soc. Am. A 20, 935–940 (2003).
[Crossref]

D.N. Chigrin, S. Enoch, C.M.S. Torres, and G. Tayeb, “Self-guiding in two-dimensional PhCs,” Opt. Express 11, 1203 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1203
[Crossref] [PubMed]

C. Chen, A. Sharkawy, D.M. Pustai, S. Shi, and D.W. Prather, “Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides,“ Opt. Express 11, 3153–3159 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3153
[Crossref] [PubMed]

S. Kim, G.P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384–2386 (2003).
[Crossref] [PubMed]

T.F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol. (A) 197, 688–702 (2003).
[Crossref]

D. Pustai, A. Sharkawy, S. Shi, G. Jin, J. Murakowski, and D.W. Prather, “Characterization and Analysis of Photonic Crystal Coupled Waveguides,” Journal of Microlithography, Microfabrication, and Microsystems 2, 292–299 (2003).
[Crossref]

F. Cuesta, A. Griol, A. Martinez, and J. Marti, “Experimental demonstration of photonic crystal directional coupler at microwave frequencies,” Electron. Lett. 39, 455–456 (2003).
[Crossref]

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

C. Schuller, F. Klopf, J.P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[Crossref]

2002 (5)

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE Journal of Selected Topics in Quantum Electronics 8, 1246–1257 (2002).
[Crossref]

G.P. Nordin, S. Kim, J.B. Cai, and J.H. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express 10, 1334–1341 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1334
[Crossref] [PubMed]

A. Sharkawy, S. Shi, and D.W. Prather, “Heterostructure photonic crystals: theory and applications,” Appl. Opt. 41, 7245–7253 (2002).
[Crossref] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

2001 (1)

2000 (3)

S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[Crossref]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-Crystal-Based Beam Splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[Crossref]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62 , 4488–4492 (2000).
[Crossref]

1999 (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]

1996 (1)

P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Microcavities in Photonic Crystals: Mode Symmetry, Tunability, and Coupling Efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[Crossref]

1987 (2)

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Baba, T.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

Bayindir, M.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-Crystal-Based Beam Splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[Crossref]

Birner, A.

S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[Crossref]

Busch, K.

S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[Crossref]

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]

Cai, J.

Cai, J.B.

Chen, C.

Chigrin, D.N.

Chutinan, A.

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62 , 4488–4492 (2000).
[Crossref]

Cuesta, F.

F. Cuesta, A. Griol, A. Martinez, and J. Marti, “Experimental demonstration of photonic crystal directional coupler at microwave frequencies,” Electron. Lett. 39, 455–456 (2003).
[Crossref]

Enoch, S.

Fan, S.

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Microcavities in Photonic Crystals: Mode Symmetry, Tunability, and Coupling Efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[Crossref]

Forchel, A.

C. Schuller, F. Klopf, J.P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[Crossref]

Fukaya, N.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

Gosele, U.

S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[Crossref]

Griol, A.

F. Cuesta, A. Griol, A. Martinez, and J. Marti, “Experimental demonstration of photonic crystal directional coupler at microwave frequencies,” Electron. Lett. 39, 455–456 (2003).
[Crossref]

Iwai, T.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

Jiang, J.

Jiang, J.H.

Jin, G.

D. Pustai, A. Sharkawy, S. Shi, G. Jin, J. Murakowski, and D.W. Prather, “Characterization and Analysis of Photonic Crystal Coupled Waveguides,” Journal of Microlithography, Microfabrication, and Microsystems 2, 292–299 (2003).
[Crossref]

Joannopoulos, J.D.

S.G. Johnson and J.D. Joannopoulos, “Block-Iterative Frequency-Domain Methods for Maxwell’s Equations in a Planewave Basis,” Opt. Express 8, 173–180 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173
[Crossref] [PubMed]

P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Microcavities in Photonic Crystals: Mode Symmetry, Tunability, and Coupling Efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[Crossref]

John, S.

S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[Crossref]

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Johnson, S.G.

Kamp, M.

C. Schuller, F. Klopf, J.P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[Crossref]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Kim, S.

Klopf, F.

C. Schuller, F. Klopf, J.P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[Crossref]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Krauss, T.F.

T.F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol. (A) 197, 688–702 (2003).
[Crossref]

Lehmann, V.

S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[Crossref]

Leonard, S.W.

S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[Crossref]

Loncar, M.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE Journal of Selected Topics in Quantum Electronics 8, 1246–1257 (2002).
[Crossref]

Marti, J.

F. Cuesta, A. Griol, A. Martinez, and J. Marti, “Experimental demonstration of photonic crystal directional coupler at microwave frequencies,” Electron. Lett. 39, 455–456 (2003).
[Crossref]

Martinez, A.

F. Cuesta, A. Griol, A. Martinez, and J. Marti, “Experimental demonstration of photonic crystal directional coupler at microwave frequencies,” Electron. Lett. 39, 455–456 (2003).
[Crossref]

Mondia, J.P.

S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[Crossref]

Motegi, A.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

Murakowski, J.

D.W. Prather, S. Shi, D.M. Pustai, A. Sharkawy, C. Chen, S. Venkataraman, J. Murakowski, and G. Schneider, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29, 50–52 (2004).
[Crossref] [PubMed]

D. Pustai, A. Sharkawy, S. Shi, G. Jin, J. Murakowski, and D.W. Prather, “Characterization and Analysis of Photonic Crystal Coupled Waveguides,” Journal of Microlithography, Microfabrication, and Microsystems 2, 292–299 (2003).
[Crossref]

Noda, S.

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62 , 4488–4492 (2000).
[Crossref]

Nordin, G.P.

Notomi, M.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Ozbay, E.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-Crystal-Based Beam Splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[Crossref]

Prather, D.W.

Pustai, D.

D. Pustai, A. Sharkawy, S. Shi, G. Jin, J. Murakowski, and D.W. Prather, “Characterization and Analysis of Photonic Crystal Coupled Waveguides,” Journal of Microlithography, Microfabrication, and Microsystems 2, 292–299 (2003).
[Crossref]

Pustai, D.M.

Reithmaier, J.P.

C. Schuller, F. Klopf, J.P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[Crossref]

Sakai, A.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Scherer, A.

J. Witzens and A. Scherer, “Efficient excitation of self-collimated beams and single Bloch modes in planar PhCs,” J. Opt. Soc. Am. A 20, 935–940 (2003).
[Crossref]

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE Journal of Selected Topics in Quantum Electronics 8, 1246–1257 (2002).
[Crossref]

Schneider, G.

Schuller, C.

C. Schuller, F. Klopf, J.P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[Crossref]

Sharkawy, A.

Shi, S.

Shinya, A.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

Shouyuan, S.

D.W. Prather, A. Sharkawy, and S. Shouyuan, “Design and Applications of Photonic Crystals,” in Handbook of Nanoscience, Engineering, and Technology,W.A. Goddard III, D.W. Brenner, S.E. Lyshevski, and G.J. Iafrate, eds. (CRC Press, Boca Raton, FL, 2002), pp 211–232.

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Inc., Boston, MA, 1995).

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Tayeb, G.

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-Crystal-Based Beam Splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[Crossref]

Toader, O.

S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[Crossref]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

Torres, C.M.S.

van Driel, H.M.

S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[Crossref]

Venkataraman, S.

Villeneuve, P.R.

P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Microcavities in Photonic Crystals: Mode Symmetry, Tunability, and Coupling Efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[Crossref]

Watanabe, Y.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

Witzens, J.

J. Witzens and A. Scherer, “Efficient excitation of self-collimated beams and single Bloch modes in planar PhCs,” J. Opt. Soc. Am. A 20, 935–940 (2003).
[Crossref]

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE Journal of Selected Topics in Quantum Electronics 8, 1246–1257 (2002).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

Yu, X.

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-Crystal-Based Beam Splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

C. Schuller, F. Klopf, J.P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003).
[Crossref]

Electron. Lett. (1)

F. Cuesta, A. Griol, A. Martinez, and J. Marti, “Experimental demonstration of photonic crystal directional coupler at microwave frequencies,” Electron. Lett. 39, 455–456 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38, 736–742 (2002).
[Crossref]

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron. 38, 743–752 (2002).
[Crossref]

IEEE Journal of Selected Topics in Quantum Electronics (1)

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE Journal of Selected Topics in Quantum Electronics 8, 1246–1257 (2002).
[Crossref]

J. Opt. Soc. Am. A (1)

Journal of Microlithography, Microfabrication, and Microsystems (1)

D. Pustai, A. Sharkawy, S. Shi, G. Jin, J. Murakowski, and D.W. Prather, “Characterization and Analysis of Photonic Crystal Coupled Waveguides,” Journal of Microlithography, Microfabrication, and Microsystems 2, 292–299 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (3)

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62 , 4488–4492 (2000).
[Crossref]

P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, “Microcavities in Photonic Crystals: Mode Symmetry, Tunability, and Coupling Efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[Crossref]

S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389–R2392 (2000).
[Crossref]

Phys. Rev. Lett. (3)

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[Crossref]

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Phys. Stat. Sol. (A) (1)

T.F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol. (A) 197, 688–702 (2003).
[Crossref]

Other (2)

D.W. Prather, A. Sharkawy, and S. Shouyuan, “Design and Applications of Photonic Crystals,” in Handbook of Nanoscience, Engineering, and Technology,W.A. Goddard III, D.W. Brenner, S.E. Lyshevski, and G.J. Iafrate, eds. (CRC Press, Boca Raton, FL, 2002), pp 211–232.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Inc., Boston, MA, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Equi-frequency contours of the self-guiding PhC lattice at normalized frequencies between 0.22 and 0.32. (b) Dispersion diagram of the PhC lattice in the splitting region. By increasing the diameter of the air holes in the splitting region, a bandgap exists between normalized frequencies of 0.2801 and 0.2977.

Fig. 2.
Fig. 2.

Scanning electron micrograph of our one-to-two beam splitting device. The beam splitting structure consists of a self-guiding PhC lattice and beam splitting PhC lattice. The splitting PhC region is outlined by the red lines.

Fig. 3.
Fig. 3.

Percentage of output power vs. normalized frequency for port 1 and port 2 when the air hole radius of the splitting region is rs = 0.34a. A 3dB split is observed at a normalized frequency of 0.2982, which corresponds to a wavelength of 1482nm.

Fig. 4.
Fig. 4.

Top-down view of light propagation through the self-guiding and beam-splitter regions at a wavelength of (a) 1453nm, (b) 1482nm, and (c) 1503nm. (d) Light propagation through the same structure after liquid crystal infiltration at a wavelength of 1503nm.

Fig. 5.
Fig. 5.

(a) Dispersion diagram of triangular lattice with air hole of radius r=0.35a and (b) intensity distribution of light reflected by a splitting structure consisting of a three layer hexagonal lattice of air holes.

Fig. 6.
Fig. 6.

One-to-three beam-splitter for a self-guiding PhC. (a) Scanning electron micrograph of the one-to-three splitter fabricated in a silicon-on-insulator wafer. The magnification of the red-dashed box depicts the splitting region. (b) Steady -state field of a Finite-Difference Time-Domain method simulation at a frequency f = 0.26c/a. (c) Top-down view from an IR camera of light propagating through the fabricated device at a wavelength of λ=1600nm. The green arrow denotes the direction and location of the incident beam.

Metrics