## Abstract

We developed a one-unit system for electroholography, which consists of a special-purpose computational chip and a high-resolution, reflective mode, liquid-crystal display panel as a spatial light modulator. We implemented them on one board whose size is approximately 20 cm × 20 cm. The chip makes a computer-generated hologram whose size is 800 × 600 at nearly real time (~0.5 s) for an object consisting of 1000 points. The pixel pitch of the display panel is 12 μm, and the resolution is 800 × 600. It reconstructs a three-dimensional motion image whose size is approximately 3 cm × 3 cm × 3 cm. The system can be readily scaled up, since the units consisting of the chip and the display are easily set in parallel.

© 2004 Optical Society of America

Full Article |

PDF Article
### Equations (6)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$I({x}_{\alpha},{y}_{\alpha})=\sum _{j}^{N}{A}_{j}\mathrm{cos}\left[\frac{2\pi}{\lambda}\sqrt{{\left({x}_{\alpha}-{x}_{j}\right)}^{2}+{\left({y}_{\alpha}+{y}_{j}\right)}^{2}+{z}_{j}}\right].$$
(2)
$$I({x}_{\alpha},{y}_{\alpha})=\sum _{j}^{N}{A}_{j}\mathrm{cos}\left[\frac{2\pi}{\lambda}\left({z}_{j}+\frac{{{x}_{\alpha j}}^{2}+{{y}_{\alpha j}}^{2}}{2{z}_{j}}\right)\right].$$
(3)
$$I({X}_{\alpha},{Y}_{\alpha})=\sum _{j}^{N}{A}_{j}\mathrm{cos}\left[2\pi \left(\frac{p{Z}_{j}}{\lambda}+\frac{p}{2\lambda {Z}_{j}}\left({X}_{\alpha j}^{2}+{Y}_{\alpha j}^{2}\right)\right)\right].$$
(4)
$$I({X}_{\alpha +k},{Y}_{\alpha})=\sum _{j}^{N}{A}_{j}\mathrm{cos}\left(2\pi {\Theta}_{k}\right).$$
(5)
$${\Theta}_{0}=\frac{p{Z}_{j}}{\lambda}+\frac{p}{2\lambda {Z}_{j}}\left({X}_{\alpha j}^{2}+{Y}_{\alpha j}^{2}\right),\phantom{\rule{.5em}{0ex}}\phantom{\rule{.9em}{0ex}}{\Gamma}_{0}=\frac{p}{2\lambda {Z}_{j}}\left(2{X}_{\alpha j}+1\right),\phantom{\rule{.5em}{0ex}}\phantom{\rule{.9em}{0ex}}\Delta =\frac{p}{\lambda {Z}_{j}}.$$
(6)
$${\Theta}_{k+1}={\Theta}_{k}+{\Gamma}_{k},\phantom{\rule{.5em}{0ex}}\phantom{\rule{.9em}{0ex}}{\Gamma}_{k+1}={\Gamma}_{k}+\Delta .$$