Abstract

We developed a one-unit system for electroholography, which consists of a special-purpose computational chip and a high-resolution, reflective mode, liquid-crystal display panel as a spatial light modulator. We implemented them on one board whose size is approximately 20 cm × 20 cm. The chip makes a computer-generated hologram whose size is 800 × 600 at nearly real time (~0.5 s) for an object consisting of 1000 points. The pixel pitch of the display panel is 12 μm, and the resolution is 800 × 600. It reconstructs a three-dimensional motion image whose size is approximately 3 cm × 3 cm × 3 cm. The system can be readily scaled up, since the units consisting of the chip and the display are easily set in parallel.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212-20, 174–182 (1990).
    [CrossRef]
  2. P. S. Hilaire, S. A. Benton, M. Lucente, J. D. Sutter, and W. J. Plesniak, “Advances in holographic video,” Proc. SPIE 1914-27, 188–196 (1993).
  3. P. S. Hilaire, “Scalable optical architecture for electronic holography,” Opt. Eng. 34, 2900–2911 (1995).
    [CrossRef]
  4. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt. 26, 4351–4360 (1987).
    [CrossRef] [PubMed]
  5. M. Lucente, “Interactive three-dimensional holographic displays: seeing the future in depth,” Comp. Graphics 31, 63–67 (1997).
    [CrossRef]
  6. T. Ito, T. Shimobaba, H. Godo, and M. Horiuchi, “Holographic reconstruction with a 10-µm pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light,” Opt. Lett. 27, 1406–1408 (2002).
    [CrossRef]
  7. M. Huebschman, B. Munjuluri, and R. G. Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11, 437–445 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-437">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-437</a>
    [CrossRef] [PubMed]
  8. H. Yoshikawa, S. Iwase, and T. Oneda, “Fast computation of Fresnel holograms employing difference,” Proc. SPIE 3956, 48–55 (2000).
    [CrossRef]
  9. K. Matsushima and M. Takai, “Fast computation of Fresnel holograms employing difference,” Appl. Opt. 39 6587–6594 (2000).
    [CrossRef]
  10. T. Shimobaba and T. Ito, “An efficient computational method suitable for hardware of computer-generated hologram with phase computation by addition,” Comp. Phys. Commun. 138, 44–52 (2001).
    [CrossRef]
  11. T. Yabe, T. Ito, and M. Okazaki, “Holography machine HORN-1 for computer-aided retrieval of virtual three-dimensional image,” Jpn. J. Appl. Phys. 32, L1359–L1361 (1993).
    [CrossRef]
  12. T. Ito, T. Yabe, M. Okazaki, and M. Yanagi, “Special-purpose computer HORN-1 for reconstruction of virtual image in three dimensions,” Comp. Phys. Commun. 82, 104–110 (1994).
    [CrossRef]
  13. T. Ito, H. Eldeib, K. Yoshida, S. Takahashi, T. Yabe, and T. Kunugi, “Special-purpose computer for holography HORN-2,” Comp. Phys. Commun. 93, 13–20 (1996)
    [CrossRef]
  14. T. Shimobaba, N. Masuda, T. Sugie, S. Hosono, S. Tsukui, and T. Ito, “Special-purpose computer for holography HORN-3 with PLD technology,” Comp. Phys. Commun. 130, 75–82 (2000).
    [CrossRef]
  15. T. Shimobaba, and T. Ito, “Special-purpose computer for holography HORN-4 with recurrence algorithm,” Comp. Phys. Commun. 148, 160–170 (2002).
    [CrossRef]

Appl. Opt.

Comp. Graphics

M. Lucente, “Interactive three-dimensional holographic displays: seeing the future in depth,” Comp. Graphics 31, 63–67 (1997).
[CrossRef]

Comp. Phys. Commun.

T. Shimobaba and T. Ito, “An efficient computational method suitable for hardware of computer-generated hologram with phase computation by addition,” Comp. Phys. Commun. 138, 44–52 (2001).
[CrossRef]

T. Ito, T. Yabe, M. Okazaki, and M. Yanagi, “Special-purpose computer HORN-1 for reconstruction of virtual image in three dimensions,” Comp. Phys. Commun. 82, 104–110 (1994).
[CrossRef]

T. Ito, H. Eldeib, K. Yoshida, S. Takahashi, T. Yabe, and T. Kunugi, “Special-purpose computer for holography HORN-2,” Comp. Phys. Commun. 93, 13–20 (1996)
[CrossRef]

T. Shimobaba, N. Masuda, T. Sugie, S. Hosono, S. Tsukui, and T. Ito, “Special-purpose computer for holography HORN-3 with PLD technology,” Comp. Phys. Commun. 130, 75–82 (2000).
[CrossRef]

T. Shimobaba, and T. Ito, “Special-purpose computer for holography HORN-4 with recurrence algorithm,” Comp. Phys. Commun. 148, 160–170 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

T. Yabe, T. Ito, and M. Okazaki, “Holography machine HORN-1 for computer-aided retrieval of virtual three-dimensional image,” Jpn. J. Appl. Phys. 32, L1359–L1361 (1993).
[CrossRef]

Opt. Eng.

P. S. Hilaire, “Scalable optical architecture for electronic holography,” Opt. Eng. 34, 2900–2911 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212-20, 174–182 (1990).
[CrossRef]

P. S. Hilaire, S. A. Benton, M. Lucente, J. D. Sutter, and W. J. Plesniak, “Advances in holographic video,” Proc. SPIE 1914-27, 188–196 (1993).

H. Yoshikawa, S. Iwase, and T. Oneda, “Fast computation of Fresnel holograms employing difference,” Proc. SPIE 3956, 48–55 (2000).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (305 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic drawing of our recurrence formulas algorithm.

Fig. 2.
Fig. 2.

Optical setup including the CGH calculation system.

Fig. 3.
Fig. 3.

Top view of the one-unit system board made by hand.

Fig. 4.
Fig. 4.

(318 KB movie) Reconstructed image from the one-unit system board.

Fig. 5.
Fig. 5.

Parallel system by special-purpose chips and display panels.

Fig. 6.
Fig. 6.

Top view of the one-unit system board by PCB.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( x α , y α ) = j N A j cos [ 2 π λ ( x α x j ) 2 + ( y α + y j ) 2 + z j ] .
I ( x α , y α ) = j N A j cos [ 2 π λ ( z j + x α j 2 + y α j 2 2 z j ) ] .
I ( X α , Y α ) = j N A j cos [ 2 π ( p Z j λ + p 2 λ Z j ( X α j 2 + Y α j 2 ) ) ] .
I ( X α + k , Y α ) = j N A j cos ( 2 π Θ k ) .
Θ 0 = p Z j λ + p 2 λ Z j ( X α j 2 + Y α j 2 ) , Γ 0 = p 2 λ Z j ( 2 X α j + 1 ) , Δ = p λ Z j .
Θ k + 1 = Θ k + Γ k , Γ k + 1 = Γ k + Δ .

Metrics