Abstract

We report on an easy-to-evaluate expression for the prediction of the bend-loss for a large mode area photonic crystal fiber (PCF) with a triangular air-hole lattice. The expression is based on a recently proposed formulation of the V-parameter for a PCF and contains no free parameters. The validity of the expression is verified experimentally for varying fiber parameters as well as bend radius. The typical deviation between the position of the measured and the predicted bend loss edge is within measurement uncertainty.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847�??851 (2003).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Endlessly single mode photonic crystal fibre,�?? Opt. Lett. 22, 961�??963 (1997).
    [CrossRef] [PubMed]
  3. T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. B. Libori, �??Macro-bending loss properties of photonic crystal fibre,�?? Electron. Lett. 37, 287�??289 (2001).
    [CrossRef]
  4. T. Sørensen, J. Broeng, A. Bjarklev, T. P. Hansen, E. Knudsen, S. E. B. Libori, H. R. Simonsen, and J. R. Jensen, �??Spectral Macro-bending loss considerations for photonic crystal fibres,�?? IEE Proc.-Opt. 149, 206 (2002).
  5. N. A. Mortensen and J. R. Folkenberg, �??Low-loss criterion and effective area considerations for photonic crystal fibers,�?? J. Opt. A: Pure Appl. Opt. 5, 163�??167 (2003).
    [CrossRef]
  6. J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, �??Understanding bending losses in holey optical fibers,�?? Opt. Commun. 227, 317�??335 (2003).
    [CrossRef]
  7. J. Sakai and T. Kimura, �??Bending loss of propagation modes in arbitrary-index profile optical fibers,�?? Appl. Opt. 17, 1499�??1506 (1978).
    [CrossRef] [PubMed]
  8. J. Sakai, �??Simplified bending loss formula for single-mode optical fibers,�?? Appl. Opt. 18, 951�??952 (1979).
    [CrossRef] [PubMed]
  9. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  10. N. A. Mortensen, �??Effective area of photonic crystal fibers,�?? Opt. Express 10, 341�??348 (2002). <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341</a>.
    [CrossRef] [PubMed]
  11. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, �??Modal cut-off and the V�??parameter in photonic crystal fibers,�?? Opt. Lett. 28, 1879�??1881 (2003).
    [CrossRef] [PubMed]
  12. M. D. Nielsen, N. A. Mortensen, J. R. Folkenberg, and A. Bjarklev, �??Mode-Field Radius of Photonic Crystal Fibers Expressed by the V�??parameter,�?? Opt. Lett. 28, 2309�??2311 (2003).
    [CrossRef] [PubMed]
  13. M. D. Nielsen and N. A. Mortensen, �??Photonic crystal fiber design based on the V�??parameter,�?? Opt. Express 11, 2762�??2768 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762</a>.
    [CrossRef] [PubMed]

Appl. Opt. (2)

Electron. Lett. (1)

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. B. Libori, �??Macro-bending loss properties of photonic crystal fibre,�?? Electron. Lett. 37, 287�??289 (2001).
[CrossRef]

IEE Proc.-Opt. (1)

T. Sørensen, J. Broeng, A. Bjarklev, T. P. Hansen, E. Knudsen, S. E. B. Libori, H. R. Simonsen, and J. R. Jensen, �??Spectral Macro-bending loss considerations for photonic crystal fibres,�?? IEE Proc.-Opt. 149, 206 (2002).

J. Opt. A: Pure Appl. Opt. (1)

N. A. Mortensen and J. R. Folkenberg, �??Low-loss criterion and effective area considerations for photonic crystal fibers,�?? J. Opt. A: Pure Appl. Opt. 5, 163�??167 (2003).
[CrossRef]

Nature (1)

J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847�??851 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, �??Understanding bending losses in holey optical fibers,�?? Opt. Commun. 227, 317�??335 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Structural data for the LMA fibers which all have a cross-section with a triangular arrangement of air-holes running along the full length of the fiber.

Fig. 2.
Fig. 2.

Macro-bending loss for the LMA-20 fiber for bending radii of R=8 cm (red, solid curve) and R=16 cm (black, solid curve). Predictions of Eq. (1) are also included (dashed curves).

Fig. 3.
Fig. 3.

Macro-bending loss for the LMA-25 fiber for bending radius of R=16 cm (solid curve). Predictions of Eq. (1) are also included (dashed curve).

Fig. 4.
Fig. 4.

Macro-bending loss for the LMA-35 fiber for bending radius of R=16 cm (solid curve). Predictions of Eq. (1) are also included (dashed curve).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α Λ 1 8 6 π 1 n S Λ 2 A eff λ Λ F ( 1 6 π 2 1 n S 2 R Λ ( λ Λ ) 2 V PCF 3 ) , F ( x ) = x 1 2 exp ( x ) ,
V PCF = Λ β 2 β cl 2
π 3 1 6 π 2 1 n S 2 ~ 1 4 R * Λ ( λ Λ ) 2 ~ 1 R * Λ 3 λ 2
α = π 8 1 A eff ρ W exp ( 4 3 R ρ Δ V 2 W 3 ) W R ρ + V 2 2 Δ W
Δ = sin 2 θ c 2 , V = β ρ sin θ c , W = ρ β 2 β cl 2 .
α Λ 1 8 2 π 3 Λ 2 A eff 1 β Λ F ( 2 3 R Λ V PCF 3 ( β Λ ) 2 )

Metrics