Abstract

We demonstrate a practical and simple, all fiber Bragg grating (FBG) based Raman laser sensing probe for long-distance, remote temperature sensing application. Using multiple laser cavities based on FBG’s and a tunable chirped FBG, we obtain the simultaneous multichannel remote temperature sensing operation at a 50 km distance. The temperature sensitivity is measured to be 7.15 pm/°C.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, �??Fiber grating sensors,�?? J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  2. Y. G. Han, S. B. Lee, C. S. Kim, Jin U. Kang, U. C. Paek, and Y. Chung, �??Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivity,�?? Opt. Express 11, 476- 481 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-476</a>.
    [CrossRef] [PubMed]
  3. X. Shu, Y. L., D. Zhao, B. Gwandu, F. Floreani, L. Zhang, and Ian Bennion, �??Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement,�?? Opt. Lett. 27, 701-703 (2002).
    [CrossRef]
  4. L. Bjerkan, �??Application of fiber-optic Bragg grating sensors in monitoring environmental loads of overhead power transmission lines,�?? App. Opt. 39, 554-560 (2000).
    [CrossRef]
  5. Y. Nakajima, Y. Shindo, and T. Yoshikawa, �??Novel concept as long-distance transmission FBG sensor system using distributed Raman amplification,�?? in Proc. 16th International Conference on Optical Fiber Sensors (Nara Japan, October 2003), Th1-4.
  6. J. Mandal, S. Pal, T. Sun, K. T. V. Grattan, A. T. Augousti, and S. A. Wade, �??Bragg grating-based fiber-optic laser probe for temperature sensing,�?? IEEE Photon. Technol. Lett. 16, 218-220 (2004).
    [CrossRef]
  7. P.-C. Peng, H.-Y Tseng, and Sien Chi, �??Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme,�?? IEEE Photon. Technol. Lett. 16, 575-577 (2004).
    [CrossRef]
  8. J. Kim, J. Bae, Y. �??G. Han, S. H. Kim, J.-M. Jeong, S.B. Lee, �??Effectively tunable dispersion compensation based on chirped fiber Bragg gratings without central wavelength shift,�?? IEEE Photon. Technol. Lett. 16, 849- 851 (2004).
    [CrossRef]

App. Opt. (1)

L. Bjerkan, �??Application of fiber-optic Bragg grating sensors in monitoring environmental loads of overhead power transmission lines,�?? App. Opt. 39, 554-560 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Mandal, S. Pal, T. Sun, K. T. V. Grattan, A. T. Augousti, and S. A. Wade, �??Bragg grating-based fiber-optic laser probe for temperature sensing,�?? IEEE Photon. Technol. Lett. 16, 218-220 (2004).
[CrossRef]

P.-C. Peng, H.-Y Tseng, and Sien Chi, �??Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme,�?? IEEE Photon. Technol. Lett. 16, 575-577 (2004).
[CrossRef]

J. Kim, J. Bae, Y. �??G. Han, S. H. Kim, J.-M. Jeong, S.B. Lee, �??Effectively tunable dispersion compensation based on chirped fiber Bragg gratings without central wavelength shift,�?? IEEE Photon. Technol. Lett. 16, 849- 851 (2004).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, �??Fiber grating sensors,�?? J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optical Fiber Sensors 2003 (1)

Y. Nakajima, Y. Shindo, and T. Yoshikawa, �??Novel concept as long-distance transmission FBG sensor system using distributed Raman amplification,�?? in Proc. 16th International Conference on Optical Fiber Sensors (Nara Japan, October 2003), Th1-4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for our all FBG based Raman fiber laser temperature sensor system.

Fig. 2.
Fig. 2.

Measured reflectivity of FBG’s and the tunable broadband chirped FBG used (RB: 0.1nm).

Fig. 3.
Fig. 3.

Measured Raman gain profile for the 50 km Single mode fiber used in this experiment.

Fig. 4.
Fig. 4.

Measured output spectrum of the Raman laser at a room temperature (RB: 0.1nm).

Fig. 5.
Fig. 5.

(a) Optical spectrum of the Raman laser output associated with FBG1 when the temperature was increased. (b) Laser center wavelength as a function of the applied temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Laser center wavelength ( nm ) = 1553.97 ( nm ) + 7.15 ( pm ) × Temperature ( ° C )

Metrics