Abstract

The effective index change and form birefringence are calculated in UV-exposed fibers using a high-order vectorial finite element method. The birefringence is compared in optical fibers with and without photosensitive inner cladding.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Gafsi, and M. A. El-Sherif, �??�??Analysis of Induced-Birefringence Effects on Fiber Bragg Gratings,�??�?? Opt. Fiber Technol. 6, 299-323 (2000).
    [CrossRef]
  2. T. Erdogan, and V. Mizrahi, �??�??Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,�??�?? J. Opt. Soc. Am. B 11, 2100-2105 (1994)
    [CrossRef]
  3. D. Innis, Q. Zhong, A. M. Vengserkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, �??�??Atomic force microscopy study of uv-induced anisotropy in hydrogen-loaded germanosilicate fibers,�??�?? Appl. Phys. Lett. 65, 1528-1530 (1994)
    [CrossRef]
  4. A. M. Vengsarkar, Q. Zhong, D. Innis, W. A. Reed, P. J. Lemaire, and S. G. Kosinski �??�??Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,�??�?? Opt. Lett. 19, 1260-1262 (1994).
    [CrossRef] [PubMed]
  5. H. Renner, �??�??Effective index increase, form birefringence and transmission losses in UV-illuminated photosensitive fiber,�??�?? Opt. Express 9, 546-560 (2001) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-11-546">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-11-546</a>
    [CrossRef] [PubMed]
  6. K. Dossou, S. LaRochelle, and M. Fontaine, �??�??Numerical Analysis of the Contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber,�??�?? J. Lightwave Technol. 20, 1463-1469 (2002).
    [CrossRef]
  7. N. Belhadj, K. Dossou, X. Daxhelet, S. LaRochelle, S. Lacroix, and M. Fontaine, �??�??A comparative study of numerical methods for the calculation of the birefringence of UV-illuminated fibers�??�??, OSA Technical Digest : Conference on Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, Monterey, California, USA, September 1-3, (paper MD20) 112-114 (2003).
  8. L. Dong, G. Qi, M. Marro, V. Bhatia, L. L. Hepburn, M. Swan, A. Collier, and D. L. Weidman �??�??Suppression of Cladding Mode Coupling Loss in Fiber Bragg Gratings,�??�?? J. Lightwave Technol. 18, 1583-1590 (2000).
    [CrossRef]
  9. L. Dong, W. H. Loh, J.E. Caplen, and J.D. Minelly, �??�??Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers,�??�?? Opt. Lett. 22, 694-696 (1997).
    [CrossRef] [PubMed]
  10. K. Dossou, Département de mathématique et de statistique, Université Laval, (Québec) Canada G1K 7P4, and M. Fontaine are preparing a manuscript to be called "A high order isoparametric finite element method for computation of waveguide modes."
  11. H. Patrick and S. L. Gilbert, "Growth of Bragg gratings produced by continuous-wave ultraviolet light in Optical fiber", Opt. Lett. 18, 1484-1486 (1993).
    [CrossRef] [PubMed]
  12. M. Koshiba, S. Maruyama, and K. Hirayama, �??�??A Vector Finite Element Method with the high-order mixed-interpolation-type triangular elements for optical waveguiding problems,�??�?? J. Lightwave Technol. 12, 495-502(1994)
    [CrossRef]
  13. L. Demkowicz, and L. Vardapetyan, �??�??Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements,�??�?? Comput. Methods Appl. Mech. Engrg. 152, 103-124 (1998).
    [CrossRef]

Appl. Phys. Lett. (1)

D. Innis, Q. Zhong, A. M. Vengserkar, W. A. Reed, S. G. Kosinski, and P. J. Lemaire, �??�??Atomic force microscopy study of uv-induced anisotropy in hydrogen-loaded germanosilicate fibers,�??�?? Appl. Phys. Lett. 65, 1528-1530 (1994)
[CrossRef]

Comput. Methods Appl. Mech. Engrg. (1)

L. Demkowicz, and L. Vardapetyan, �??�??Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements,�??�?? Comput. Methods Appl. Mech. Engrg. 152, 103-124 (1998).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Fiber Technol. (1)

R. Gafsi, and M. A. El-Sherif, �??�??Analysis of Induced-Birefringence Effects on Fiber Bragg Gratings,�??�?? Opt. Fiber Technol. 6, 299-323 (2000).
[CrossRef]

Opt. Lett. (3)

OSA Technical Digest 2003 (1)

N. Belhadj, K. Dossou, X. Daxhelet, S. LaRochelle, S. Lacroix, and M. Fontaine, �??�??A comparative study of numerical methods for the calculation of the birefringence of UV-illuminated fibers�??�??, OSA Technical Digest : Conference on Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, Monterey, California, USA, September 1-3, (paper MD20) 112-114 (2003).

Other (1)

K. Dossou, Département de mathématique et de statistique, Université Laval, (Québec) Canada G1K 7P4, and M. Fontaine are preparing a manuscript to be called "A high order isoparametric finite element method for computation of waveguide modes."

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The refractive index profiles for 2α=0.2 µm-1 and δnp =0.01 in the (a) SF (b) CMSF and (c) PCOF.

Fig. 2.
Fig. 2.

The normalized electric field (solid line) superposed to the asymmetric refractive index profile (dashed line) for δnp =0.01 and 2α=0.2 µm-1. We show in (a) the SF, in (b) the CMSF and in (c) the PCOF fibers.

Fig. 3.
Fig. 3.

The effective index change as a function of the peak refractive index change for (a) CMSF (solid lines) and SF (dashed lines) and (b) PCOF (solid lines) and SF (dashed lines).

Fig. 4.
Fig. 4.

The form birefringence as a function of the effective index of δneff,x for (a) the CMSF (solid lines) and SF (dashed lines) and (b) the PCOF (solid lines) and SF (dashed lines).

Fig. 5.
Fig. 5.

The refractive index profile of the CMSF before and after illumination for (a) (2α=0.4 µm-1, δneff,x =2.29×10-3) and, (b) (2α=0.4 µm-1, δneff,x =2.88×10-3).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ δ n ( x , y ) = δ n p exp [ 2 α ( x + η 2 y 2 ) ] for θ r η δ n ( x , y ) = 0 elsewhere

Metrics