Abstract

The feasibility of spectroscopic optical coherence tomography (SOCT) to quantify spatially localized absorption profiles of chromophores embedded in weakly scattering media with a single measurement over the full spectral bandwidth of the light source was investigated by using a state-of-the-art ultra-broad bandwidth Ti:Al2O3 laser (λc=800 nm, Δλ=260 nm, Pout=120 mW ex-fiber). The precision of the method as a function of the chromophore absorption, the sample thickness, and different parameters related to the measurement procedure was evaluated both theoretically and experimentally in single and multilayered phantoms. It is demonstrated that in weakly scattering media SOCT is able to extract µa(λ) as small as 0.5 mm-1 from 450 µm thick phantoms with a precision of ~2% in the central and ~8% at the edges of the used wavelength region. As expected, in phantoms with the same absorption properties and thickness ~180 µm the precision of SOCT decreases to >10% in the central wavelength region.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. J.G. Fujimoto, M.E. Brezinski, G.J. Tearney, S.A. Boppart, B. Bouma, M.R. Hee, J.F. Southern, and E.A. Swanson, �??Optical biopsy and imaging using optical coherence tomography,�?? Nature Medicine 1, 970-972 (1995).
    [CrossRef] [PubMed]
  3. A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, �??Optical coherence tomography �?? principles and applications,�?? Rep. Prog. Phys 66, 239-303 (2003).
    [CrossRef]
  4. M.D. Kulkarni, and J.A. Izatt, CLEO �??96. Summaries of Papers Presented at the Conference on Lasers and Electro Optics 9 (96CH35899) 59-60 (1996).
  5. R. Leitgeb, M. Wojtkowski, A. Kowalczky, C.K. Hitzenberger, M. Sticker, and A.F. Fercher, �??Spectral measurement of absorption by frequency domain optical coherence tomography�??, Opt. Lett. 25, 820-822 (2000).
    [CrossRef]
  6. J.M. Schmitt, S.H. Xiang, and K.M. Yung, �??Differential absorption imaging with optical coherence tomography,�?? J. Opt. Soc. Am. A 15, 2288-2296 (1998).
    [CrossRef]
  7. U.S. Sathyam, B.W. Colston, B.M. DaSilva, and M.J. Everett, �??Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths,�?? Appl. Opt. 38, 2097-2104 (1999).
    [CrossRef]
  8. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E.M. Anger, P.K. Ahnelt, M. Stur, J.E. Morgan, A. Cowey, G. Junge, T. Le, and A. Stingl, �??Compact, low cost Ti:Al2O3 laser for in-vivo ultrahigh resolution optical coherence tomography,�?? Opt. Lett. 28, 905-907 (2003).
    [CrossRef] [PubMed]
  9. J.L. Boulnois, and A. Morfino, �??Photo�??biomolecular effects of laser radiation,�?? Minerva Med. 74, 1669-1673 (1983).
    [PubMed]
  10. U. Morgner, W. Drexler, F.X. Kärtner, X.D. Li, C. Pitris, E.P. Ippen, and J.G. Fujimoto, �??Spectroscopic optical coherence tomography,�?? Opt. Lett. 2, 111-113 (2000).
    [CrossRef]
  11. T. Støren, A. Simonsen, O. Løkberg, T. Lindmo, L. Svaasand, and A. Røyset, �??Measurement of dye diffusion in agar gel by use of low coherence interferometry,�?? Opt. Lett. 28, 1215-1217 (2003).
    [CrossRef] [PubMed]
  12. D.J. Faber, E.G. Mik, M.C.G. Alders, and T.G. van Leeuwen, �??Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,�?? Opt. Lett. 28, 1437-1439 (2003).
    [CrossRef]
  13. K. Bizheva, B. Hermann, B. Považay, H. Sattmann, A. Unterhuber, F. Krausz, A.F. Fercher, and W. Drexler, �??Spectroscopic optical coherence tomography: sources of error in determination of the sample�??s absorption coefficient,�?? in OSA Biomedical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington DC, 2002), pp. 290-292.
  14. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, �??Optical properties of circulating human blood in the wavelength range 400 - 2500 nm,�?? J. Biomed. Opt. 4, 36-46 (1999).
    [CrossRef] [PubMed]
  15. T. Fuji, A. Unterhuber, V.S. Yakovlev, G. Tempea, F. Krausz, and W. Drexler, �??Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,�?? Appl. Phys. B (2003).
    [CrossRef]
  16. K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, �??Compact, broad bandwidth fiber laser for sub-2 µm axial resolution optical coherence tomography in the 1300 nm wavelength region,�?? Opt. Lett. 28, 707-709 (2003).
    [CrossRef] [PubMed]
  17. M.J.L. Landsman, G. Kwant, G.A. Mook, and W.G. Zijlstra, �??Light absorbing properties, stability, and spectral stabilization of indocyanine green,�?? J. Appl. Physiol. 40, 575-583 (1976).
    [PubMed]
  18. J.M. Schmitt, S.L. Lee, and K.M. Yung, �??An optical microscope with enhanced resolving power in thick tissue,�?? Opt. Commun. 142, 203-207 (1997).
    [CrossRef]

Appl. Opt.

Appl. Phys. B

T. Fuji, A. Unterhuber, V.S. Yakovlev, G. Tempea, F. Krausz, and W. Drexler, �??Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser,�?? Appl. Phys. B (2003).
[CrossRef]

CLEO ???96

M.D. Kulkarni, and J.A. Izatt, CLEO �??96. Summaries of Papers Presented at the Conference on Lasers and Electro Optics 9 (96CH35899) 59-60 (1996).

J. Appl. Physiol.

M.J.L. Landsman, G. Kwant, G.A. Mook, and W.G. Zijlstra, �??Light absorbing properties, stability, and spectral stabilization of indocyanine green,�?? J. Appl. Physiol. 40, 575-583 (1976).
[PubMed]

J. Biomed. Opt.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, �??Optical properties of circulating human blood in the wavelength range 400 - 2500 nm,�?? J. Biomed. Opt. 4, 36-46 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Minerva Med.

J.L. Boulnois, and A. Morfino, �??Photo�??biomolecular effects of laser radiation,�?? Minerva Med. 74, 1669-1673 (1983).
[PubMed]

Nature Medicine

J.G. Fujimoto, M.E. Brezinski, G.J. Tearney, S.A. Boppart, B. Bouma, M.R. Hee, J.F. Southern, and E.A. Swanson, �??Optical biopsy and imaging using optical coherence tomography,�?? Nature Medicine 1, 970-972 (1995).
[CrossRef] [PubMed]

Opt. Commun.

J.M. Schmitt, S.L. Lee, and K.M. Yung, �??An optical microscope with enhanced resolving power in thick tissue,�?? Opt. Commun. 142, 203-207 (1997).
[CrossRef]

Opt. Lett.

R. Leitgeb, M. Wojtkowski, A. Kowalczky, C.K. Hitzenberger, M. Sticker, and A.F. Fercher, �??Spectral measurement of absorption by frequency domain optical coherence tomography�??, Opt. Lett. 25, 820-822 (2000).
[CrossRef]

K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, �??Compact, broad bandwidth fiber laser for sub-2 µm axial resolution optical coherence tomography in the 1300 nm wavelength region,�?? Opt. Lett. 28, 707-709 (2003).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E.M. Anger, P.K. Ahnelt, M. Stur, J.E. Morgan, A. Cowey, G. Junge, T. Le, and A. Stingl, �??Compact, low cost Ti:Al2O3 laser for in-vivo ultrahigh resolution optical coherence tomography,�?? Opt. Lett. 28, 905-907 (2003).
[CrossRef] [PubMed]

T. Støren, A. Simonsen, O. Løkberg, T. Lindmo, L. Svaasand, and A. Røyset, �??Measurement of dye diffusion in agar gel by use of low coherence interferometry,�?? Opt. Lett. 28, 1215-1217 (2003).
[CrossRef] [PubMed]

D.J. Faber, E.G. Mik, M.C.G. Alders, and T.G. van Leeuwen, �??Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,�?? Opt. Lett. 28, 1437-1439 (2003).
[CrossRef]

U. Morgner, W. Drexler, F.X. Kärtner, X.D. Li, C. Pitris, E.P. Ippen, and J.G. Fujimoto, �??Spectroscopic optical coherence tomography,�?? Opt. Lett. 2, 111-113 (2000).
[CrossRef]

OSA Biomedical Topical Meetings

K. Bizheva, B. Hermann, B. Považay, H. Sattmann, A. Unterhuber, F. Krausz, A.F. Fercher, and W. Drexler, �??Spectroscopic optical coherence tomography: sources of error in determination of the sample�??s absorption coefficient,�?? in OSA Biomedical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington DC, 2002), pp. 290-292.

Rep. Prog. Phys

A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, �??Optical coherence tomography �?? principles and applications,�?? Rep. Prog. Phys 66, 239-303 (2003).
[CrossRef]

Science

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Differential changes in the incident amplitude spectrum δI 0/I 0 as a function of the sample thickness d calculated for different absorption coefficients; (µa =0.4 mm-1 is equal to the absorption coefficient of whole blood at the isosbestic point, λ=800 nm).

Fig. 2.
Fig. 2.

Relative error in the extracted absorption coefficient, Δµa /µa , as a function of the differential changes in the incident amplitude spectrum δ I 0/I 0.

Fig. 3.
Fig. 3.

Emission spectrum of the Ti:Al2O3 laser (black line) as measured with SOCT from a mirror reflection. Absorption profiles measured with a spectrometer from two gel samples with different concentration of ICG (green and red lines).

Fig. 4.
Fig. 4.

Absorption profiles measured from 450 µm thick (A) and 180 µm thick (B) single layered gel:ICG phantoms with SOCT (red line) and with the spectrometer (black line). The insets show schematics of the sample; light is incident from the top.

Fig. 5.
Fig. 5.

Absorption profiles measured from double layered gel:ICG samples with SOCT (red and green lines) and with the spectrometer (black line). The insets shows schematics of the phantoms, light is incident from the top. (A) Low absorption layer on top (~490µm), high absorption layer below (~530µm). (B) High absorption layer (~560µm) on top of a low absorption layer (~510µm).

Fig. 6.
Fig. 6.

Comparison between the due to Eq. (3) expected error (black line) and the statistical error (red line) Δµa /µa (λ) (average of 4 profiles, 50 A-scans each) determined for a double layered phantom corresponding to Fig. 5(a). Absorption profiles measured from the top (A) and the bottom (B) layer of the phantom (green line).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( ω ) = S ( ω ) H ( ω ) ,
H ( λ , z ) = e 2 z · μ ( λ )
μ a ( λ ) = 1 2 d ln I 0 I 1
Δ μ a ( λ ) μ a ( λ ) = { ( Δ d d ) 2 + [ ln ( 1 δ I 0 ( λ ) I 0 ( λ ) ) ] 2 · [ ( Δ I 0 ( λ ) I 0 ( λ ) ) 2 + ( Δ I ( λ ) I ( λ ) ) 2 ] } 1 2

Metrics