Abstract

We report the fabrication and accurate measurement of propagation and bending losses in single-mode silicon waveguides with submicron dimensions fabricated on silicon-on-insulator wafers. Owing to the small sidewall surface roughness achieved by processing on a standard 200mm CMOS fabrication line, minimal propagation losses of 3.6±0.1dB/cm for the TE polarization were measured at the telecommunications wavelength of 1.5µm. Losses per 90° bend are measured to be 0.086±0.005dB for a bending radius of 1µm and as low as 0.013±0.005dB for a bend radius of 2µm. These record low numbers can be used as a benchmark for further development of silicon microphotonic components and circuits.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. Hibino, �??Silica-Based Planar Lightwave Circuits and Their Applications,�?? MRS Bulletin May 2003, p.365 (2003).
  2. T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno,�??Silica-Based Waveguide-Type 16x16 Optical Switch Module Incorporating Driving Circuits,�?? IEEE Phot. Techn. Lett. 15, 1300 (2003).
    [CrossRef]
  3. G.-L. Bona, R. Germann, and B. J. Offrein, �??SiON high refractive-index waveguide and planar lightwave circuits,�?? IBM J. Res.Develop. 47, 239 (2003).
    [CrossRef]
  4. S. J. McNab, N. Moll and Yu. A. Vlasov, �??Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,�?? Opt. Express 11, 2927 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927</a>.
    [CrossRef] [PubMed]
  5. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling �??Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,�?? Appl. Phys. Lett. 77, 1617 (2000).
    [CrossRef]
  6. K. K. Lee, D. R. Lim, and L. C. Kimerling, �??Fabrication of ultralow-loss Si/SiO waveguides by roughness reduction,�?? Opt. Lett. 26, 1888 (2001).
    [CrossRef]
  7. K. K. Lee, �??Transmission and routing of optical signals in on-chip waveguides for silicon microphotonics,�?? PhD thesis, MIT (2001).
  8. D. R. Lim, �??Device integration for silicon microphotonics platforms,�?? PhD thesis, MIT (2000).
  9. A. Sakai, G. Hara, and T. Baba, �??Propagation characteristics of ultrahigh - optical waveguide on siliconon-insulator substrate," Jpn. J. Appl. Phys. Part 2, 4B, L383 (2001).
    [CrossRef]
  10. P. Dumon, W. Bogaerts, J. Van Campenhout, V. Wiaux, J. Wouters, S. Beckx, R. Baets, �??Low-loss photonic wires and compact ring resonators in silicon-on-insulator,�?? LEOS Benelux Annual Symposium 2003, Netherlands, (2003).
  11. T. Tsuchizawa,T. Watanabe, E. Tamechika, T. Shoji, K. Yamada, J. Takahashi, S. Uchiyama, S. Itabashi and H. Morita, "Fabrication and evaluation of submicron-square Si wire waveguides with spot-size converters", Paper TuU2 presented at LEOS Annual Meeting, p.287, Glasgow, UK (2002).
  12. R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr.,�??Ultracompact Corner-Mirrors and T-Branches in Silicon-on-Insulator�??, IEEE Photon. Techn. Lett. 14, 65 (2002).
    [CrossRef]
  13. V. Almeida, R. Panepucci, and M. Lipson, �??Nanotaper for compact mode conversion,�?? Opt. Lett. 28, 1302 (2002).
    [CrossRef]
  14. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, �??Low loss mode size converter from 0.3 ìm square Si wire waveguides to singlemode fibers,�?? Electron. Lett. 38, 1669 (2002).
    [CrossRef]
  15. P. K. Tien, "Light waves in thin films and integrated optics," Appl. Opt. 10, 2395 (1971).
    [CrossRef] [PubMed]
  16. D. Marcuse,�??Mode conversion caused by surface imperfections of a dielectric slab waveguide,�?? Bell Syst. Tech. J. 48, 3187 (1969).
  17. F. P. Payne and J. P. R. Lacey, �??A theoretical analysis of scattering loss from planar optical waveguides,�?? Opt. Quantum Electron. 26, 977 (1994).
    [CrossRef]
  18. E. A. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J. 48, 2103 (1969).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling �??Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,�?? Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Bell Syst. Tech. J. (2)

D. Marcuse,�??Mode conversion caused by surface imperfections of a dielectric slab waveguide,�?? Bell Syst. Tech. J. 48, 3187 (1969).

E. A. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J. 48, 2103 (1969).

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, �??Low loss mode size converter from 0.3 ìm square Si wire waveguides to singlemode fibers,�?? Electron. Lett. 38, 1669 (2002).
[CrossRef]

IBM J. Res.Develop. (1)

G.-L. Bona, R. Germann, and B. J. Offrein, �??SiON high refractive-index waveguide and planar lightwave circuits,�?? IBM J. Res.Develop. 47, 239 (2003).
[CrossRef]

IEEE Phot. Techn. Lett. (1)

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno,�??Silica-Based Waveguide-Type 16x16 Optical Switch Module Incorporating Driving Circuits,�?? IEEE Phot. Techn. Lett. 15, 1300 (2003).
[CrossRef]

IEEE Photon. Techn. Lett. (1)

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr.,�??Ultracompact Corner-Mirrors and T-Branches in Silicon-on-Insulator�??, IEEE Photon. Techn. Lett. 14, 65 (2002).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (1)

A. Sakai, G. Hara, and T. Baba, �??Propagation characteristics of ultrahigh - optical waveguide on siliconon-insulator substrate," Jpn. J. Appl. Phys. Part 2, 4B, L383 (2001).
[CrossRef]

LEOS Annual Meeting (1)

T. Tsuchizawa,T. Watanabe, E. Tamechika, T. Shoji, K. Yamada, J. Takahashi, S. Uchiyama, S. Itabashi and H. Morita, "Fabrication and evaluation of submicron-square Si wire waveguides with spot-size converters", Paper TuU2 presented at LEOS Annual Meeting, p.287, Glasgow, UK (2002).

LEOS Benelux Annual Symposium 2003 (1)

P. Dumon, W. Bogaerts, J. Van Campenhout, V. Wiaux, J. Wouters, S. Beckx, R. Baets, �??Low-loss photonic wires and compact ring resonators in silicon-on-insulator,�?? LEOS Benelux Annual Symposium 2003, Netherlands, (2003).

MRS Bulletin (1)

Y. Hibino, �??Silica-Based Planar Lightwave Circuits and Their Applications,�?? MRS Bulletin May 2003, p.365 (2003).

Opt. Express (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, �??A theoretical analysis of scattering loss from planar optical waveguides,�?? Opt. Quantum Electron. 26, 977 (1994).
[CrossRef]

Other (2)

K. K. Lee, �??Transmission and routing of optical signals in on-chip waveguides for silicon microphotonics,�?? PhD thesis, MIT (2001).

D. R. Lim, �??Device integration for silicon microphotonics platforms,�?? PhD thesis, MIT (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM images of a single-mode strip waveguide with 445×220nm core cross-section at different orientations to show the sidewall quality.

Fig. 2.
Fig. 2.

Transmission spectra of a set of 445×220nm SOI strip waveguides of different lengths measured for TE-polarized light. Spectra are normalized on transmission through a straight 4.2mm long strip waveguide without bends. Inset: schematic of the serpentine waveguide layout to obtain different waveguide lengths with aligned input and output ports.

Fig. 3.
Fig. 3.

Loss spectrum derived from the results of Fig. 2 for 445x220nm SOI strip waveguide. Blue (red) line corresponds to TE (TM) polarizations. Circles represent results from the loss measurements obtained by fitting the slope as shown in the inset. Inset: TE transmission as a function of the waveguide length for two different wavelengths of 1300 and 1500nm. Top panel shows the mode profile for TE- and TM-like modes of the waveguide at 1300nm wavelengths.

Fig. 4.
Fig. 4.

Spectra of bending losses for TE (a) and TM (b) polarizations. Red, green and blue curves correspond to measurements of bends with radii R=1, 2, and 5 microns.

Tables (2)

Tables Icon

Table 1. Comparison of propagation losses of the TE mode measured in single-mode SOI strip waveguides.

Tables Icon

Table 2. Comparison of bending losses of the TE mode measured in single-mode SOI strip waveguides.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α = 4 σ 2 h 2 β ( r + 2 p ) = σ 2 k 0 2 h β · E s 2 E 2 d x · Δ n 2
α = K · exp ( c R ) , where c = β ( 2 Δ n eff n eff ) 3 2

Metrics