Abstract

An 80 MHz pulse train of ~100 fs optical pulses centred at ~1.5 µm is propagated through a variety of high-index-contrast silicon-on-insulator waveguide structures less than 1 mm long. All-optical power limiting and negative differential transmission, based only on the intrinsic nonlinear response of the untextured waveguides near 1.5 µm, are demonstrated for average in-guide power levels of ~1 mW. Superlinear transmission is observed in a textured silicon waveguide for power levels less than 20 µW.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Numerous links can be found on J. D. Joannopoulos�?? web page <a href= "http://ab-initio.mit.edu/photons/index.html">http://ab-initio.mit.edu/photons/index.html</a>.
  2. M. Lon�?ar, D. Nedljkovi�?, T. Doll, J. Vu�?kovi�?, A. Scherer, and T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937-1939 (2000).
    [CrossRef]
  3. L. H. Frandsen, P. I. Borel, M. Thorhauge, J. Cheng, M. Kampanis, M. Kristensen, A. Lavrinenko, Y. Zhuang, and H. M. H. Chong, �??Propagation of TE and TM polarized light through smoothed sixty degree bends in planar photonic crystal waveguides,�?? in Proc. Conf. On Laser and Electro Optics (CLEO)-Europe 2003, paper CM4-1-FRI (2003).
    [CrossRef]
  4. S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Baltasseva, P. I. Borel, and M. Kristensen, �??Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,�?? Phys. Rev. B66, 235204 (2002)
  5. J. Arentoft, T. Søndergaard, M. Kristensen, A. Baltasseva, M. Thorhauge, and L. Frandsen, �??Low-loss silicon-on-insulator photonic crystal waveguides,�?? Electron. Lett. 38, 274-275 (2002).
    [CrossRef]
  6. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, �??An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibres,�?? IEEE J. Quantum Electron. 38, 949-955 (2002).
    [CrossRef]
  7. M. Notomi, A, Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, �??Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,�?? Electron. Lett. 37, 293-295 (2001).
    [CrossRef]
  8. G. W. Rieger, K. S. Virk, and J. F. Young, �??Nonlinear propagation of ultrafast 1.5 µm pulses in high-index-contrast silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 900-902 (2004). <a href= "http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000084000006000900000001&gifs=Yes">http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000084000006000900000001&gifs=Yes</a>.
    [CrossRef]
  9. S. J. McNab, N. Moll, and Y. A. Vlasov, �??Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,�?? Opt. Express 11, 2927 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927.</a>.
    [CrossRef] [PubMed]
  10. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin and F. Cerrina, �??Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,�?? Opt. Lett. 26, 1888 (2001).
    [CrossRef]
  11. L. Brzozowski and E. H. Sargent, �??All-optical analog-to-digital converters, hardlimiters, and logic gates,�?? IEEE J. Lightwave Techn. 19, 114 (2001).
    [CrossRef]
  12. M. F. Yanik, S. Fan, M. Solja�?i�? and J. D. Joannopoulos, �??All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,�?? Opt. Lett. 28, 2506-2508 (2003).
    [CrossRef] [PubMed]
  13. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, �??Phase-matching and nonlinear optical processes in silicon waveguides,�?? Opt. Express 12, 149 �?? 160 (2004) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-149">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-149</a>.
    [CrossRef] [PubMed]
  14. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, �??Observation of stimulated Raman amplification in silicon waveguides,�?? Opt. Express 11, 1731 �?? 1739 (2003) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731</a>.
    [CrossRef] [PubMed]
  15. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,�?? Appl. Phys. Lett. 80 (3), 416-418 (2002).
    [CrossRef]
  16. M. Dinu, F. Quochi, and H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82 (18), 2954-2956 (2003).
    [CrossRef]
  17. O. Boyraz, T. Indukuri, and B. Jalali, �??Self-phase-modulation induced spectral broadening in silicon waveguides,�?? Opt. Express 12, 829 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-829">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-829</a>.
    [CrossRef] [PubMed]
  18. Y. Maeda, �??All-optical inverted operational amplifier derived from negative nonlinear feedback systems,�?? Electron. Lett. 36, 1138-1139 (2000).
    [CrossRef]
  19. Y. Maeda, �??All-optical inverter operating at 1.5 µm laser in yttrium aluminum garnets,�?? Electron. Lett. 36, 1138-1139 (2000).
    [CrossRef]
  20. Y. Maeda, �??All-optical NAND logic gate operating at 1.51 �?? 1.55 µm in Er-doped aluminosilicate glass,�?? Electron. Lett. 35, 582-584 (2000).
    [CrossRef]
  21. J. E. Raynolds and M. LoCascio, �??Semiconductor nanocrystal based saturable absorbers for optical switching applications,�?? IEEE J. Quantum Electron. (submitted, see <a href= "http://www.evidenttech.com/pdf/whitePapers/satAbsorbSwitching.pdf">http://www.evidenttech.com/pdf/whitePapers/satAbsorbSwitching.pdf</a>).

Appl. Phys. Lett.

M. Lon�?ar, D. Nedljkovi�?, T. Doll, J. Vu�?kovi�?, A. Scherer, and T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937-1939 (2000).
[CrossRef]

G. W. Rieger, K. S. Virk, and J. F. Young, �??Nonlinear propagation of ultrafast 1.5 µm pulses in high-index-contrast silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 900-902 (2004). <a href= "http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000084000006000900000001&gifs=Yes">http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000084000006000900000001&gifs=Yes</a>.
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,�?? Appl. Phys. Lett. 80 (3), 416-418 (2002).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82 (18), 2954-2956 (2003).
[CrossRef]

CLEO-Europe 2003

L. H. Frandsen, P. I. Borel, M. Thorhauge, J. Cheng, M. Kampanis, M. Kristensen, A. Lavrinenko, Y. Zhuang, and H. M. H. Chong, �??Propagation of TE and TM polarized light through smoothed sixty degree bends in planar photonic crystal waveguides,�?? in Proc. Conf. On Laser and Electro Optics (CLEO)-Europe 2003, paper CM4-1-FRI (2003).
[CrossRef]

Electron. Lett.

J. Arentoft, T. Søndergaard, M. Kristensen, A. Baltasseva, M. Thorhauge, and L. Frandsen, �??Low-loss silicon-on-insulator photonic crystal waveguides,�?? Electron. Lett. 38, 274-275 (2002).
[CrossRef]

M. Notomi, A, Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, �??Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,�?? Electron. Lett. 37, 293-295 (2001).
[CrossRef]

Y. Maeda, �??All-optical inverted operational amplifier derived from negative nonlinear feedback systems,�?? Electron. Lett. 36, 1138-1139 (2000).
[CrossRef]

Y. Maeda, �??All-optical inverter operating at 1.5 µm laser in yttrium aluminum garnets,�?? Electron. Lett. 36, 1138-1139 (2000).
[CrossRef]

Y. Maeda, �??All-optical NAND logic gate operating at 1.51 �?? 1.55 µm in Er-doped aluminosilicate glass,�?? Electron. Lett. 35, 582-584 (2000).
[CrossRef]

IEEE J. Lightwave Techn.

L. Brzozowski and E. H. Sargent, �??All-optical analog-to-digital converters, hardlimiters, and logic gates,�?? IEEE J. Lightwave Techn. 19, 114 (2001).
[CrossRef]

IEEE J. Quantum Electron.

J. E. Raynolds and M. LoCascio, �??Semiconductor nanocrystal based saturable absorbers for optical switching applications,�?? IEEE J. Quantum Electron. (submitted, see <a href= "http://www.evidenttech.com/pdf/whitePapers/satAbsorbSwitching.pdf">http://www.evidenttech.com/pdf/whitePapers/satAbsorbSwitching.pdf</a>).

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, �??An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibres,�?? IEEE J. Quantum Electron. 38, 949-955 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Baltasseva, P. I. Borel, and M. Kristensen, �??Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,�?? Phys. Rev. B66, 235204 (2002)

Other

Numerous links can be found on J. D. Joannopoulos�?? web page <a href= "http://ab-initio.mit.edu/photons/index.html">http://ab-initio.mit.edu/photons/index.html</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Power transmission in single mode (full symbols) and multimode (open red triangles) waveguides. The multimode waveguide is 300 µm long and the lengths of the single mode waveguides change from 50 µm (top) to 1000 µm (bottom).

Fig. 2.
Fig. 2.

Power transmission of an 800-µm-long single mode waveguide.

Fig. 3.
Fig. 3.

Pulse spectra of single mode (black lines) and multimode (red lines) waveguides at different intensities. Dashed lines indicate the centre wavenumbers of the pulses launched into the waveguide. Due to differences in the photonic crystal grating couplers, slightly different wavelengths were used for single mode (1.49 µm) and multimode waveguides (1.53 µm). The quoted intensities represent the peak intensities inside the waveguides as estimated from measurements of the coupling efficiencies and simulations of the mode profiles.

Fig. 4.
Fig. 4.

Pulse spectra as a function of input power after propagation through a 0.8-mm-long single mode waveguide. High power spectra are slightly scaled for better visibility of the line shape. On the right-hand side, the corresponding power transmission curve (red squares) is inserted (see Fig. 2 for power designations).

Fig. 5.
Fig. 5.

Pulse spectra at two different input powers after propagation through a 0.8-mm-long single mode waveguide. Dashed lines indicate a region that may be used for all-optical logic operations. Careful inspection of the transmission spectra suggests a simple method for increasing the contrast of negative differential transmission.

Fig. 6.
Fig. 6.

Transmission spectra through a 250-µm-long, 510-nm-wide (single mode) waveguide with 100-µm-long adiabatic input and output tapers connecting to 325-µm-long, 3-µm-wide multimode guides at either end.

Fig. 7.
Fig. 7.

Transmission at 6575 cm-1 taken directly from the spectra presented in Fig. 6.

Fig. 8.
Fig. 8.

Top: Schematic of the resonator. The Bragg grating written into the single mode section of the waveguide is partly covered with photoresist forming a cavity in the center of the waveguide. Bottom left: Microscope image (top view) of two waveguides covered with photoresist. Horizontal trenches limiting the width of the guides appear dark green. A vertical trench of photoresist is removed from the center part of the grating forming a micro-cavity. Bottom right: Microscope image of the Bragg grating before coating with photoresist.

Fig. 9.
Fig. 9.

Low power (linear) spectrum of resonator modes and band edge.

Fig. 10.
Fig. 10.

Transmission spectra of the resonator with increasing in-guide power (bottom to top) up to ~50 µW. The input centre-wavelength coincides with the mode at 6771 cm-1.

Fig. 11.
Fig. 11.

Power transmitted through the 6592 cm-1 resonance. The average power inside the waveguide is in the range (0-50) µW. The input center wavelength is at 6771 cm-1.

Metrics