Abstract

We achieved room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser by current injection. This is the first time ever that room temperature continuous wave operation of a photonic crystal diode laser has been realized. This laser features single mode oscillation over a large area, which is impossible for conventional lasers. In this work, we optimized the epitaxial layer composition for better carrier confinement and clarified the relationship between the diameter of the air holes in the photonic crystal and the threshold current of the laser in order to estimate the optimized threshold current.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett., 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. Noda, A. Chutinan and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature (London) 407, 608-610 (2000).
    [CrossRef]
  3. S. Noda, K. Tomoda, N. Yamamoto and A. Chutinan, �??Full three-dimensional photonic bandgap crystals at near-infrared wavelength,�?? Science 298, 604-606 (2000).
    [CrossRef]
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus and I. Kim, �??Two-Dimensional Photonic Band-Gap Defect Mode Laser,�?? Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  5. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata and G. Sasaki, �??Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,�?? Appl. Phys. Lett. 75, 316-318 (1999).
    [CrossRef]
  6. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos and O. Nalamasu, �??Laser action from two-dimensional distributed feedback in photonic crystals,�?? Appl. Phys. Lett. 74, 7-9 (1999).
    [CrossRef]
  7. S. Noda, M. Yokoyama, M. Imada, A. Chutinan and M. Mochizuki, �??Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,�?? Science 293, 1123-1125 (2001).
    [CrossRef] [PubMed]
  8. D. Ohnishi, K. Sakai, M. Imada and S. Noda, �??Continuous wave operation of surface emitting twodimensional photonic crystal laser,�?? Electron. Lett. 39, 612-614 (2003).
    [CrossRef]
  9. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).
  10. M. Fujita, R. Ushigome and T. Baba, �??Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 µA,�?? Electron. Lett. 36, 790-791 (2000).
    [CrossRef]
  11. W. Streifer, D. R. Scifres and R. D. Burnham, �??Coupling coefficient for distributed feedback single- and double-heterostructure diode lasers,�?? IEEE J. Quantum Electron. QE-11, 867�??873 (1975)
    [CrossRef]
  12. M. M. K. Liu, Principles and applications of optical communications (McGraw-Hill, New York, 1996).

Appl. Phys. Lett. (2)

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata and G. Sasaki, �??Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,�?? Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos and O. Nalamasu, �??Laser action from two-dimensional distributed feedback in photonic crystals,�?? Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Electron. Lett. (2)

D. Ohnishi, K. Sakai, M. Imada and S. Noda, �??Continuous wave operation of surface emitting twodimensional photonic crystal laser,�?? Electron. Lett. 39, 612-614 (2003).
[CrossRef]

M. Fujita, R. Ushigome and T. Baba, �??Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 µA,�?? Electron. Lett. 36, 790-791 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Streifer, D. R. Scifres and R. D. Burnham, �??Coupling coefficient for distributed feedback single- and double-heterostructure diode lasers,�?? IEEE J. Quantum Electron. QE-11, 867�??873 (1975)
[CrossRef]

Nature (1)

S. Noda, A. Chutinan and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature (London) 407, 608-610 (2000).
[CrossRef]

Phys. Rev. Lett., (1)

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett., 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Science (3)

S. Noda, K. Tomoda, N. Yamamoto and A. Chutinan, �??Full three-dimensional photonic bandgap crystals at near-infrared wavelength,�?? Science 298, 604-606 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus and I. Kim, �??Two-Dimensional Photonic Band-Gap Defect Mode Laser,�?? Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan and M. Mochizuki, �??Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design,�?? Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Other (2)

M. M. K. Liu, Principles and applications of optical communications (McGraw-Hill, New York, 1996).

J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig.1.Schematic .
Fig.1.Schematic .

iagram of the device structure.

Fig. 2.
Fig. 2.

(a) Schematic of a square lattice photonic crystal. The two narrow arrows indicate two particular directions G-X and G-M, and the broad arrows indicate propagating light waves. (b) Schematic showing the propagating directions of the coupled waves.

Fig. 3.
Fig. 3.

Schematic conduction band diagram of the layer structure near the active layer.

Fig. 4.
Fig. 4.

Temperature characteristic of the devices under pulsed conditions (1kHz-500ns).

Fig. 5.
Fig. 5.

Lasing characteristics of the device under RT-CW condition. (a) Lasing spectrum. The operation current was 70 mA. (b) Light output power-current characteristic.

Fig. 6.
Fig. 6.

(a) Near field pattern and polarization characteristics of the device. The blue open circles indicate the measurement points with a diameter of about 10 µm, and red double-headed arrows show the direction of polarization at each point. The operating current was 76 mA. (b) Far field pattern of the device. The operating current was 66 mA.

Fig. 7.
Fig. 7.

Relationship between the air-filling factor and the normalized threshold current at 20°C.

Metrics