Abstract

We present the novel use of microstructured optical fibers not as “light-pipes”, but in a transverse geometry to manipulate the light propagating across the fiber. Fundamental and higher-order bandgaps were observed experimentally in this geometry using a number of techniques. The comparison of the measured spectra with photonic band structure and Finite-Difference Time-Domain simulations provide strong evidence that the spectral features are a result of the periodic nature of the fiber microstructure in the transverse direction.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  3. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton University Press, 1995).
  4. S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
    [CrossRef]
  5. A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
    [CrossRef] [PubMed]
  6. P.V. Braun and P. Wiltzius, "Microporous materials - Electrochemically grown photonic crystals," Nature 402, 603-604 (1999).
    [CrossRef]
  7. S.Y. Lin, J.G. Fleming, and E. Chow, "Two- and three-dimensional photonic crystals built with VLSI tools," MRS Bull. 26, 627-631 (2001).
    [CrossRef]
  8. O. Toader and S. John, "Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps," Phys. Rev. E 66, (2002).
    [CrossRef]
  9. V.L. Colvin, "From opals to optics: Colloidal photonic crystals," MRS Bull. 26, 637-641 (2001).
    [CrossRef]
  10. M. Straub and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by twophoton photopolymerization," Opt. Lett. 27, 1824-1826 (2002).
    [CrossRef]
  11. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  12. S. Shoji and S. Kawata, "Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin," Appl. Phys. Lett. 76, 2668-2670 (2000).
    [CrossRef]
  13. A. Rosenberg, R.J. Tonucci, H.B. Lin, and E.L. Shirley, "Photonic-band-structure effects for low-index-contrast two-dimensional lattices in the near-infrared," Phys. Rev. B 54, R5195-R5198 (1996).
    [CrossRef]
  14. A. Rosenberg, R.J. Tonucci, H.B. Lin, and A.J. Campillo, "Near-infrared two-dimensional photonic bandgap materials," Opt. Lett. 21, 830-832 (1996).
    [CrossRef] [PubMed]
  15. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  16. T.A. Birks, J.C. Knight, and P.S. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  17. J.C. Knight, T.A. Birks, R.F. Cregan, P.S. Russell, and J.P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  18. C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photonics Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  19. N.G.R. Broderick, T.M. Monro, P.T. Bennett, and D.T. Richardson, "Nonlinearity in holey optical fibers: measurement and future opportunities," Opt. Lett. (USA) vol.24, no.20, 1395-1397 (1999).
    [CrossRef]
  20. P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
    [CrossRef]
  21. J.C. Knight, J. Broeng, T.A. Birks, and P.S.J. Russel, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  22. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  23. J.C. Knight, T.A. Birks, P.S.J. Russell, and J.G. Rarity, "Bragg scattering from an obliquely illuminated photonic crystal fiber," Appl. Optics 37, 449-452 (1998).
    [CrossRef]
  24. H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. "Lateral thinking with photonic crystal fibers" in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003)
  25. BandSOLVE�?� 1.2.0.(RSoft Design Group, Inc.), 2003
  26. K. Sakoda, "Symmetry, Degeneracy, and Uncoupled Modes in 2-Dimensional Photonic Lattices," Phys. Rev. B 52, 7982-7986 (1995).
    [CrossRef]
  27. S. Rowson, A. Chelnokov, C. Cuisin, and J.M. Lourtioz, "Two-dimensional photonic bandgap reflectors for free-propagating beams in the mid-infrared," J. Opt. A-Pure Appl. Opt. 1, 483-489 (1999).
    [CrossRef]
  28. FullWAVE�?� 3.0.1.(RSoft Design Group, Inc.), 2003
  29. J.C. Knight, T.A. Birks, P.S. Russell, and D.M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  30. A. Argyros, I.M. Bassett, M.A. van Eijkelenborg, M.C.J. Large, J. Zagari, N.A.P. Nicorovici, R.C. McPhedran, and C.M. de Sterke, "Ring structures in microstructured polymer optical fibres," Opt. Express 9, 813-820 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813</a>
    [CrossRef] [PubMed]
  31. F. Ladouceur, "Roughness, inhomogeneity, and integrated optics," J. Lightwave Technol. 15, 1020-1025 (1997).
    [CrossRef]
  32. P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, M. Gu, "Microfluidic Tunable Tall MicroChip", App. Phys. Lett. in press, March 2004

App. Phys. Lett.

P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, M. Gu, "Microfluidic Tunable Tall MicroChip", App. Phys. Lett. in press, March 2004

Appl. Optics

J.C. Knight, T.A. Birks, P.S.J. Russell, and J.G. Rarity, "Bragg scattering from an obliquely illuminated photonic crystal fiber," Appl. Optics 37, 449-452 (1998).
[CrossRef]

Appl. Phys. Lett.

P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

S. Shoji and S. Kawata, "Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin," Appl. Phys. Lett. 76, 2668-2670 (2000).
[CrossRef]

Electron. Lett.

J.C. Knight, T.A. Birks, R.F. Cregan, P.S. Russell, and J.P. de Sandro, "Large mode area photonic crystal fibre," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

IEEE LEOS 2003 Postdeadline paper

H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. "Lateral thinking with photonic crystal fibers" in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003)

IEEE Photonics Technol. Lett.

C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photonics Technol. Lett. 12, 807-809 (2000).
[CrossRef]

J. Lightwave Technol.

F. Ladouceur, "Roughness, inhomogeneity, and integrated optics," J. Lightwave Technol. 15, 1020-1025 (1997).
[CrossRef]

J. Opt. A-Pure Appl. Opt.

S. Rowson, A. Chelnokov, C. Cuisin, and J.M. Lourtioz, "Two-dimensional photonic bandgap reflectors for free-propagating beams in the mid-infrared," J. Opt. A-Pure Appl. Opt. 1, 483-489 (1999).
[CrossRef]

MRS Bull.

S.Y. Lin, J.G. Fleming, and E. Chow, "Two- and three-dimensional photonic crystals built with VLSI tools," MRS Bull. 26, 627-631 (2001).
[CrossRef]

V.L. Colvin, "From opals to optics: Colloidal photonic crystals," MRS Bull. 26, 637-641 (2001).
[CrossRef]

Nature

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

P.V. Braun and P. Wiltzius, "Microporous materials - Electrochemically grown photonic crystals," Nature 402, 603-604 (1999).
[CrossRef]

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

A. Rosenberg, R.J. Tonucci, H.B. Lin, and E.L. Shirley, "Photonic-band-structure effects for low-index-contrast two-dimensional lattices in the near-infrared," Phys. Rev. B 54, R5195-R5198 (1996).
[CrossRef]

K. Sakoda, "Symmetry, Degeneracy, and Uncoupled Modes in 2-Dimensional Photonic Lattices," Phys. Rev. B 52, 7982-7986 (1995).
[CrossRef]

Phys. Rev. E

O. Toader and S. John, "Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps," Phys. Rev. E 66, (2002).
[CrossRef]

Phys. Rev. Lett.

A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Science

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

J.C. Knight, J. Broeng, T.A. Birks, and P.S.J. Russel, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other

BandSOLVE�?� 1.2.0.(RSoft Design Group, Inc.), 2003

FullWAVE�?� 3.0.1.(RSoft Design Group, Inc.), 2003

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the PCF in the transverse geometry, where the light propagates across the fiber. Inset shows an SEM micrograph of the PCF microstructure.

Fig. 2.
Fig. 2.

A schematic of the FTIR setup (a) and the focal plane used in the reflection and transmission measurements (b). A schematic of the OSA setup (c) and the image through the CCD camera (d) is also shown.

Fig. 3.
Fig. 3.

Band structure along Γ-M axis, for TM (left) and TE (right) polarizations. Solid and dashed lines indicate bands corresponding to modes with even and odd spatial parity, respectively. The horizontal, rectangular shades indicate partial photonic bandgaps.

Fig. 4.
Fig. 4.

(a) illustrates off-axis and out-of-plane incidence (left); and the path AB along which band structure is calculated for off-axis incidence (right). Band diagrams for 20° incidence in the off-axis and out-of-plane dimensions are shown in (b). Dark, horizontal shades indicate bandgaps predicted for this incident angle. The lighter, wider shades indicate the superposition of the bandgaps predicted for each incident angle in the range 12–27 °.

Fig. 5.
Fig. 5.

FDTD simulation geometry used to measurements.

Fig. 6.
Fig. 6.

FTIR transmission and reflection spectra of the PCF, superimposed with predicted bandgaps. The dark band indicates the predicted bandgap for the beam incident on the structure at 20° from the Γ-M axis. The lighter-shaded, wider band indicates the superposition of the bandgaps predicted for each incident angle within the 12–27° range.

Fig. 7.
Fig. 7.

Experimental and simulated transmission spectra for the OSA setup, for TM (left) and TE (right) polarizations. It shows the experimentally measured spectra (top), and the spectra simulated using the ideal (middle) and real (bottom) hole structures. Vertical bands represent predicted bandgaps.

Fig. 8.
Fig. 8.

Comparison between the simulated spectra of the hexagonal PC structure and the rectangular slab, along the Γ-M axis. Inset on the right shows a time-slice of the hex and slab structure simulations.

Metrics