Abstract

We present the novel use of microstructured optical fibers not as “light-pipes”, but in a transverse geometry to manipulate the light propagating across the fiber. Fundamental and higher-order bandgaps were observed experimentally in this geometry using a number of techniques. The comparison of the measured spectra with photonic band structure and Finite-Difference Time-Domain simulations provide strong evidence that the spectral features are a result of the periodic nature of the fiber microstructure in the transverse direction.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  3. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton University Press, 1995).
  4. S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
    [CrossRef]
  5. A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef] [PubMed]
  6. P.V. Braun and P. Wiltzius, “Microporous materials-Electrochemically grown photonic crystals,” Nature 402, 603–604 (1999).
    [CrossRef]
  7. S.Y. Lin, J.G. Fleming, and E. Chow, “Two- and three-dimensional photonic crystals built with VLSI tools,” MRS Bull. 26, 627–631 (2001).
    [CrossRef]
  8. O. Toader and S. John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,” Phys. Rev. E66, (2002).
    [CrossRef]
  9. V.L. Colvin, “From opals to optics: Colloidal photonic crystals,” MRS Bull. 26, 637–641 (2001).
    [CrossRef]
  10. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002).
    [CrossRef]
  11. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
    [CrossRef] [PubMed]
  12. S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
    [CrossRef]
  13. A. Rosenberg, R.J. Tonucci, H.B. Lin, and E.L. Shirley, “Photonic-band-structure effects for low-index-contrast two-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
    [CrossRef]
  14. A. Rosenberg, R.J. Tonucci, H.B. Lin, and A.J. Campillo, “Near-infrared two-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996).
    [CrossRef] [PubMed]
  15. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef] [PubMed]
  16. T.A. Birks, J.C. Knight, and P.S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  17. J.C. Knight, T.A. Birks, R.F. Cregan, P.S. Russell, and J.P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
    [CrossRef]
  18. J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  19. N.G.R. Broderick, T.M. Monro, P.T. Bennett, and D.T. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. (USA) vol.24, no.20, 1395–1397 (1999).
    [CrossRef]
  20. P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
    [CrossRef]
  21. J.C. Knight, J. Broeng, T.A. Birks, and P.S.J. Russel, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef] [PubMed]
  22. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  23. J.C. Knight, T.A. Birks, P.S.J. Russell, and J.G. Rarity, “Bragg scattering from an obliquely illuminated photonic crystal fiber,” Appl. Optics 37, 449–452 (1998).
    [CrossRef]
  24. H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. “Lateral thinking with photonic crystal fibers” in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003), pp.
  25. BandSOLVETM 1.2.0.(RSoft Design Group, Inc.), 2003
  26. K. Sakoda, “Symmetry, Degeneracy, and Uncoupled Modes in 2-Dimensional Photonic Lattices,” Phys. Rev. B 52, 7982–7986 (1995).
    [CrossRef]
  27. S. Rowson, A. Chelnokov, C. Cuisin, and J.M. Lourtioz, “Two-dimensional photonic bandgap reflectors for free-propagating beams in the mid-infrared,” J. Opt. A-Pure Appl. Opt. 1, 483–489 (1999).
    [CrossRef]
  28. FullWAVETM 3.0.1.(RSoft Design Group, Inc.), 2003
  29. J.C. Knight, T.A. Birks, P.S. Russell, and D.M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  30. A. Argyros, I.M. Bassett, M.A. van Eijkelenborg, M.C.J. Large, J. Zagari, N.A.P. Nicorovici, R.C. McPhedran, and C.M. de Sterke, “Ring structures in microstructured polymer optical fibres,” Opt. Express 9, 813–820 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813.
    [CrossRef] [PubMed]
  31. F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
    [CrossRef]
  32. P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, and M. Gu, “Microfluidic Tunable Tall MicroChip”, App. Phys. Lett. in press, March 2004

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

2002 (2)

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002).
[CrossRef]

P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

2001 (3)

S.Y. Lin, J.G. Fleming, and E. Chow, “Two- and three-dimensional photonic crystals built with VLSI tools,” MRS Bull. 26, 627–631 (2001).
[CrossRef]

V.L. Colvin, “From opals to optics: Colloidal photonic crystals,” MRS Bull. 26, 637–641 (2001).
[CrossRef]

A. Argyros, I.M. Bassett, M.A. van Eijkelenborg, M.C.J. Large, J. Zagari, N.A.P. Nicorovici, R.C. McPhedran, and C.M. de Sterke, “Ring structures in microstructured polymer optical fibres,” Opt. Express 9, 813–820 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813.
[CrossRef] [PubMed]

2000 (3)

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

1999 (4)

P.V. Braun and P. Wiltzius, “Microporous materials-Electrochemically grown photonic crystals,” Nature 402, 603–604 (1999).
[CrossRef]

S. Rowson, A. Chelnokov, C. Cuisin, and J.M. Lourtioz, “Two-dimensional photonic bandgap reflectors for free-propagating beams in the mid-infrared,” J. Opt. A-Pure Appl. Opt. 1, 483–489 (1999).
[CrossRef]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

N.G.R. Broderick, T.M. Monro, P.T. Bennett, and D.T. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. (USA) vol.24, no.20, 1395–1397 (1999).
[CrossRef]

1998 (4)

J.C. Knight, T.A. Birks, R.F. Cregan, P.S. Russell, and J.P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

J.C. Knight, T.A. Birks, P.S.J. Russell, and J.G. Rarity, “Bragg scattering from an obliquely illuminated photonic crystal fiber,” Appl. Optics 37, 449–452 (1998).
[CrossRef]

J.C. Knight, J. Broeng, T.A. Birks, and P.S.J. Russel, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

1997 (2)

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[CrossRef]

T.A. Birks, J.C. Knight, and P.S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

1996 (4)

A. Rosenberg, R.J. Tonucci, H.B. Lin, and A.J. Campillo, “Near-infrared two-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, P.S. Russell, and D.M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

A. Rosenberg, R.J. Tonucci, H.B. Lin, and E.L. Shirley, “Photonic-band-structure effects for low-index-contrast two-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef]

A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

1995 (1)

K. Sakoda, “Symmetry, Degeneracy, and Uncoupled Modes in 2-Dimensional Photonic Lattices,” Phys. Rev. B 52, 7982–7986 (1995).
[CrossRef]

1987 (2)

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Allan, D.C.

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Argyros, A.

Arriaga, J.

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Atkin, D.M.

Baldwin, K.W.

P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Bassett, I.M.

Bennett, P.T.

N.G.R. Broderick, T.M. Monro, P.T. Bennett, and D.T. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. (USA) vol.24, no.20, 1395–1397 (1999).
[CrossRef]

Birks, T.A.

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, P.S.J. Russell, and J.G. Rarity, “Bragg scattering from an obliquely illuminated photonic crystal fiber,” Appl. Optics 37, 449–452 (1998).
[CrossRef]

J.C. Knight, J. Broeng, T.A. Birks, and P.S.J. Russel, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S. Russell, and J.P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

T.A. Birks, J.C. Knight, and P.S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, P.S. Russell, and D.M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Biswas, R.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Braun, P.V.

P.V. Braun and P. Wiltzius, “Microporous materials-Electrochemically grown photonic crystals,” Nature 402, 603–604 (1999).
[CrossRef]

Broderick, N.G.R.

N.G.R. Broderick, T.M. Monro, P.T. Bennett, and D.T. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. (USA) vol.24, no.20, 1395–1397 (1999).
[CrossRef]

Broeng, J.

J.C. Knight, J. Broeng, T.A. Birks, and P.S.J. Russel, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Bur, J.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Campbell, M.

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Campillo, A.J.

Chelnokov, A.

S. Rowson, A. Chelnokov, C. Cuisin, and J.M. Lourtioz, “Two-dimensional photonic bandgap reflectors for free-propagating beams in the mid-infrared,” J. Opt. A-Pure Appl. Opt. 1, 483–489 (1999).
[CrossRef]

Chen, J.C.

A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Chow, E.

S.Y. Lin, J.G. Fleming, and E. Chow, “Two- and three-dimensional photonic crystals built with VLSI tools,” MRS Bull. 26, 627–631 (2001).
[CrossRef]

Colvin, V.L.

V.L. Colvin, “From opals to optics: Colloidal photonic crystals,” MRS Bull. 26, 637–641 (2001).
[CrossRef]

Cregan, R.F.

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S. Russell, and J.P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Cuisin, C.

S. Rowson, A. Chelnokov, C. Cuisin, and J.M. Lourtioz, “Two-dimensional photonic bandgap reflectors for free-propagating beams in the mid-infrared,” J. Opt. A-Pure Appl. Opt. 1, 483–489 (1999).
[CrossRef]

de Sandro, J.P.

J.C. Knight, T.A. Birks, R.F. Cregan, P.S. Russell, and J.P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

de Sterke, C.M.

Denning, R.G.

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Dolinski, M.

P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Domachuk, P.

P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, and M. Gu, “Microfluidic Tunable Tall MicroChip”, App. Phys. Lett. in press, March 2004

H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. “Lateral thinking with photonic crystal fibers” in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003), pp.

Eggleton, B.J.

P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. “Lateral thinking with photonic crystal fibers” in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003), pp.

P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, and M. Gu, “Microfluidic Tunable Tall MicroChip”, App. Phys. Lett. in press, March 2004

Fan, S.H.

A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Fleming, J.G.

S.Y. Lin, J.G. Fleming, and E. Chow, “Two- and three-dimensional photonic crystals built with VLSI tools,” MRS Bull. 26, 627–631 (2001).
[CrossRef]

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Gu, M.

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002).
[CrossRef]

P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, and M. Gu, “Microfluidic Tunable Tall MicroChip”, App. Phys. Lett. in press, March 2004

H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. “Lateral thinking with photonic crystal fibers” in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003), pp.

Harrison, M.T.

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Hetherington, D.L.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Ho, K.M.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Joannopoulos, J.D.

A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton University Press, 1995).

John, S.

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

O. Toader and S. John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,” Phys. Rev. E66, (2002).
[CrossRef]

Kawata, S.

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

Kerbage, C.

P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Knight, J.C.

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, P.S.J. Russell, and J.G. Rarity, “Bragg scattering from an obliquely illuminated photonic crystal fiber,” Appl. Optics 37, 449–452 (1998).
[CrossRef]

J.C. Knight, J. Broeng, T.A. Birks, and P.S.J. Russel, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S. Russell, and J.P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

T.A. Birks, J.C. Knight, and P.S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, P.S. Russell, and D.M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Kurland, I.

A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Kurtz, S.R.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Ladouceur, F.

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[CrossRef]

Large, M.C.J.

Lin, H.B.

A. Rosenberg, R.J. Tonucci, H.B. Lin, and A.J. Campillo, “Near-infrared two-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996).
[CrossRef] [PubMed]

A. Rosenberg, R.J. Tonucci, H.B. Lin, and E.L. Shirley, “Photonic-band-structure effects for low-index-contrast two-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef]

Lin, S.Y.

S.Y. Lin, J.G. Fleming, and E. Chow, “Two- and three-dimensional photonic crystals built with VLSI tools,” MRS Bull. 26, 627–631 (2001).
[CrossRef]

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Lourtioz, J.M.

S. Rowson, A. Chelnokov, C. Cuisin, and J.M. Lourtioz, “Two-dimensional photonic bandgap reflectors for free-propagating beams in the mid-infrared,” J. Opt. A-Pure Appl. Opt. 1, 483–489 (1999).
[CrossRef]

Mach, P.

P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Mangan, B.J.

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

McPhedran, R.C.

Meade, R.D.

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton University Press, 1995).

Mekis, A.

A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Monro, T.M.

N.G.R. Broderick, T.M. Monro, P.T. Bennett, and D.T. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. (USA) vol.24, no.20, 1395–1397 (1999).
[CrossRef]

Nguyen, H.C.

P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, and M. Gu, “Microfluidic Tunable Tall MicroChip”, App. Phys. Lett. in press, March 2004

H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. “Lateral thinking with photonic crystal fibers” in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003), pp.

Nicorovici, N.A.P.

Ortigosa-Blanch, A.

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Rarity, J.G.

J.C. Knight, T.A. Birks, P.S.J. Russell, and J.G. Rarity, “Bragg scattering from an obliquely illuminated photonic crystal fiber,” Appl. Optics 37, 449–452 (1998).
[CrossRef]

Richardson, D.T.

N.G.R. Broderick, T.M. Monro, P.T. Bennett, and D.T. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. (USA) vol.24, no.20, 1395–1397 (1999).
[CrossRef]

Roberts, P.J.

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Rogers, J.A.

P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Rosenberg, A.

A. Rosenberg, R.J. Tonucci, H.B. Lin, and A.J. Campillo, “Near-infrared two-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996).
[CrossRef] [PubMed]

A. Rosenberg, R.J. Tonucci, H.B. Lin, and E.L. Shirley, “Photonic-band-structure effects for low-index-contrast two-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef]

Rowson, S.

S. Rowson, A. Chelnokov, C. Cuisin, and J.M. Lourtioz, “Two-dimensional photonic bandgap reflectors for free-propagating beams in the mid-infrared,” J. Opt. A-Pure Appl. Opt. 1, 483–489 (1999).
[CrossRef]

Russel, P.S.J.

J.C. Knight, J. Broeng, T.A. Birks, and P.S.J. Russel, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Russell, P.S.

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S. Russell, and J.P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

T.A. Birks, J.C. Knight, and P.S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef] [PubMed]

J.C. Knight, T.A. Birks, P.S. Russell, and D.M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[CrossRef] [PubMed]

Russell, P.S.J.

J.C. Knight, T.A. Birks, P.S.J. Russell, and J.G. Rarity, “Bragg scattering from an obliquely illuminated photonic crystal fiber,” Appl. Optics 37, 449–452 (1998).
[CrossRef]

Sakoda, K.

K. Sakoda, “Symmetry, Degeneracy, and Uncoupled Modes in 2-Dimensional Photonic Lattices,” Phys. Rev. B 52, 7982–7986 (1995).
[CrossRef]

Sharp, D.N.

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Shirley, E.L.

A. Rosenberg, R.J. Tonucci, H.B. Lin, and E.L. Shirley, “Photonic-band-structure effects for low-index-contrast two-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef]

Shoji, S.

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

Sigalas, M.M.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Smith, B.K.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Steel, M.J.

H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. “Lateral thinking with photonic crystal fibers” in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003), pp.

Straub, M.

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002).
[CrossRef]

H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. “Lateral thinking with photonic crystal fibers” in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003), pp.

P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, and M. Gu, “Microfluidic Tunable Tall MicroChip”, App. Phys. Lett. in press, March 2004

Sumetsky, M.

H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. “Lateral thinking with photonic crystal fibers” in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003), pp.

Toader, O.

O. Toader and S. John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,” Phys. Rev. E66, (2002).
[CrossRef]

Tonucci, R.J.

A. Rosenberg, R.J. Tonucci, H.B. Lin, and A.J. Campillo, “Near-infrared two-dimensional photonic band-gap materials,” Opt. Lett. 21, 830–832 (1996).
[CrossRef] [PubMed]

A. Rosenberg, R.J. Tonucci, H.B. Lin, and E.L. Shirley, “Photonic-band-structure effects for low-index-contrast two-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef]

Turberfield, A.J.

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

van Eijkelenborg, M.A.

Villeneuve, P.R.

A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Wadsworth, W.J.

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Wiltzius, P.

P.V. Braun and P. Wiltzius, “Microporous materials-Electrochemically grown photonic crystals,” Nature 402, 603–604 (1999).
[CrossRef]

Windeler, R.S.

P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

Winn, J.N.

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton University Press, 1995).

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Zagari, J.

Zubrzycki, W.

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Appl. Optics (1)

J.C. Knight, T.A. Birks, P.S.J. Russell, and J.G. Rarity, “Bragg scattering from an obliquely illuminated photonic crystal fiber,” Appl. Optics 37, 449–452 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, “Tunable microfluidic optical fiber,” Appl. Phys. Lett. 80, 4294–4296 (2002).
[CrossRef]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

Electron. Lett. (1)

J.C. Knight, T.A. Birks, R.F. Cregan, P.S. Russell, and J.P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000).
[CrossRef]

J. Lightwave Technol. (1)

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[CrossRef]

J. Opt. A-Pure Appl. Opt. (1)

S. Rowson, A. Chelnokov, C. Cuisin, and J.M. Lourtioz, “Two-dimensional photonic bandgap reflectors for free-propagating beams in the mid-infrared,” J. Opt. A-Pure Appl. Opt. 1, 483–489 (1999).
[CrossRef]

MRS Bull. (2)

S.Y. Lin, J.G. Fleming, and E. Chow, “Two- and three-dimensional photonic crystals built with VLSI tools,” MRS Bull. 26, 627–631 (2001).
[CrossRef]

V.L. Colvin, “From opals to optics: Colloidal photonic crystals,” MRS Bull. 26, 637–641 (2001).
[CrossRef]

Nature (3)

S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

P.V. Braun and P. Wiltzius, “Microporous materials-Electrochemically grown photonic crystals,” Nature 402, 603–604 (1999).
[CrossRef]

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Opt. Lett. (USA) (1)

N.G.R. Broderick, T.M. Monro, P.T. Bennett, and D.T. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. (USA) vol.24, no.20, 1395–1397 (1999).
[CrossRef]

Phys. Rev. B (2)

A. Rosenberg, R.J. Tonucci, H.B. Lin, and E.L. Shirley, “Photonic-band-structure effects for low-index-contrast two-dimensional lattices in the near-infrared,” Phys. Rev. B 54, R5195–R5198 (1996).
[CrossRef]

K. Sakoda, “Symmetry, Degeneracy, and Uncoupled Modes in 2-Dimensional Photonic Lattices,” Phys. Rev. B 52, 7982–7986 (1995).
[CrossRef]

Phys. Rev. Lett. (3)

A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, and J.D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Science (3)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

J.C. Knight, J. Broeng, T.A. Birks, and P.S.J. Russel, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef] [PubMed]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Other (6)

H.C. Nguyen, P. Domachuk, M. Sumetsky, M.J. Steel, M. Straub, M. Gu, and B.J. Eggleton. “Lateral thinking with photonic crystal fibers” in Postdeadline paper at IEEE Lasers and Electro-Optics Society Meeting (Tucson, Arizona, 2003), pp.

BandSOLVETM 1.2.0.(RSoft Design Group, Inc.), 2003

FullWAVETM 3.0.1.(RSoft Design Group, Inc.), 2003

P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, and M. Gu, “Microfluidic Tunable Tall MicroChip”, App. Phys. Lett. in press, March 2004

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light. (Princeton University Press, 1995).

O. Toader and S. John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,” Phys. Rev. E66, (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the PCF in the transverse geometry, where the light propagates across the fiber. Inset shows an SEM micrograph of the PCF microstructure.

Fig. 2.
Fig. 2.

A schematic of the FTIR setup (a) and the focal plane used in the reflection and transmission measurements (b). A schematic of the OSA setup (c) and the image through the CCD camera (d) is also shown.

Fig. 3.
Fig. 3.

Band structure along Γ-M axis, for TM (left) and TE (right) polarizations. Solid and dashed lines indicate bands corresponding to modes with even and odd spatial parity, respectively. The horizontal, rectangular shades indicate partial photonic bandgaps.

Fig. 4.
Fig. 4.

(a) illustrates off-axis and out-of-plane incidence (left); and the path AB along which band structure is calculated for off-axis incidence (right). Band diagrams for 20° incidence in the off-axis and out-of-plane dimensions are shown in (b). Dark, horizontal shades indicate bandgaps predicted for this incident angle. The lighter, wider shades indicate the superposition of the bandgaps predicted for each incident angle in the range 12–27 °.

Fig. 5.
Fig. 5.

FDTD simulation geometry used to measurements.

Fig. 6.
Fig. 6.

FTIR transmission and reflection spectra of the PCF, superimposed with predicted bandgaps. The dark band indicates the predicted bandgap for the beam incident on the structure at 20° from the Γ-M axis. The lighter-shaded, wider band indicates the superposition of the bandgaps predicted for each incident angle within the 12–27° range.

Fig. 7.
Fig. 7.

Experimental and simulated transmission spectra for the OSA setup, for TM (left) and TE (right) polarizations. It shows the experimentally measured spectra (top), and the spectra simulated using the ideal (middle) and real (bottom) hole structures. Vertical bands represent predicted bandgaps.

Fig. 8.
Fig. 8.

Comparison between the simulated spectra of the hexagonal PC structure and the rectangular slab, along the Γ-M axis. Inset on the right shows a time-slice of the hex and slab structure simulations.

Metrics