Abstract

Hollow-core photonic crystal fibers have unusual properties which make them ideally suited to delivery of laser beams. We describe the properties of fibers with different core designs, and the observed effects of anti-crossings with interface modes. We conclude that 7-unit-cell cores are currently most suitable for transmission of femtosecond and sub-picosecond pulses, whereas larger cores (e.g. 19-cell cores) are better for delivering nanosecond pulsed and continuous-wave beams.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. C. Knight, �??Photonic Crystal fibers,�?? Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  2. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St.J. Russell, �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? postdeadline paper PDP24, OFC�??04 (Los Angeles, 2004).
  3. P. St.J. Russell, �??Photonic crystal fibres,�?? Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  4. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K.W. Koch, A. L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]
  5. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, B. J. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717- 723 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717</a>
    [CrossRef] [PubMed]
  6. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, D. Allen, P. J. Roberts, �??Single-mode photonic bandgap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  7. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, K. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  8. D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang and K. W. Koch, �??Surface modes and loss in air-core photonic band-gap fibers�??, in Photonic Crystal Materials and Devices, A. Adibi, A. Scherer, S. Y. Lin, Eds. Proc. SPIE 5000 (2003)
  9. F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, "Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers," Opt. Express 12, 835-840 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835</a>
    [CrossRef] [PubMed]
  10. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394</a>
    [CrossRef] [PubMed]
  11. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St.J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>
    [CrossRef] [PubMed]
  12. C. J. S. de Matos and J. R. Taylor, �??Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40�? pulse compression using air-core fiber and conventional erbium-doped fiber amplifier,�?? Opt. Express 12, 405-409 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-405</a>
    [CrossRef] [PubMed]

Nature

J. C. Knight, �??Photonic Crystal fibers,�?? Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, K. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Express

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, B. J. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717- 723 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717</a>
[CrossRef] [PubMed]

F. Luan, J. C. Knight, P. S. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, "Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers," Opt. Express 12, 835-840 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-835</a>
[CrossRef] [PubMed]

K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394</a>
[CrossRef] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St.J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>
[CrossRef] [PubMed]

C. J. S. de Matos and J. R. Taylor, �??Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40�? pulse compression using air-core fiber and conventional erbium-doped fiber amplifier,�?? Opt. Express 12, 405-409 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-405</a>
[CrossRef] [PubMed]

Proc. SPIE

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang and K. W. Koch, �??Surface modes and loss in air-core photonic band-gap fibers�??, in Photonic Crystal Materials and Devices, A. Adibi, A. Scherer, S. Y. Lin, Eds. Proc. SPIE 5000 (2003)

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, D. Allen, P. J. Roberts, �??Single-mode photonic bandgap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

P. St.J. Russell, �??Photonic crystal fibres,�?? Science 299, 358-362 (2003).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K.W. Koch, A. L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Other

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, P. St.J. Russell, �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? postdeadline paper PDP24, OFC�??04 (Los Angeles, 2004).

Supplementary Material (1)

» Media 1: AVI (505 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scanning electron micrograph of the HC-PCF used in the experiments described in this paper

Fig. 2.
Fig. 2.

Spectrum of a broadband light source (tungsten lamp) transmitted through a 5m length of the HC-PCF. The inset shows the attenuation recorded using a cutback measurement on 85 m of the same fiber.

Fig 3.
Fig 3.

Enlarged view of the interface-mode region of the transmission curve from Fig. 2, with observed near-field intensity maps at the fiber output at wavelengths corresponding to some of the intensity mimima and maxima. The entire sequence can be viewed as a movie. (avi, 505kB)

Fig. 4.
Fig. 4.

(a) Polarized near-field intensity patterns recorded using low numerical aperture excitation as a function of wavelength (log scale). (b) Near-field patterns at two different wavelengths using a higher numerical aperture excitation with the same output polarization (linear scale). One of these (1021 nm) shows interface-mode features, even though these are not apparent in the fundamental mode at this wavelength.

Fig. 5.
Fig. 5.

7-cell and 19-cell fiber structures and examples of computed guided-mode field patterns.

Tables (1)

Tables Icon

Table 1. Properties of 7-cell and 19-cell fibers.

Metrics