Abstract

A two-dimensional photonic crystal microcavity design supporting a wavelength-scale volume resonant mode with a calculated quality factor (Q) insensitive to deviations in the cavity geometry at the level of Q≳2×104 is presented. The robustness of the cavity design is confirmed by optical fiber-based measurements of passive cavities fabricated in silicon. For microcavities operating in the λ=1500 nm wavelength band, quality factors between 1.3–4.0×104 are measured for significant variations in cavity geometry and for resonant mode normalized frequencies shifted by as much as 10% of the nominal value.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Two-Dimensional Photonic Band-Gap Defect Mode Laser,�?? Science 284, 1819�??1824 (1999).
    [CrossRef] [PubMed]
  2. T. Yoshie, J. Vu¡ckovic, A. Scherer, H. Chen, and D. Deppe, �??High quality two-dimensional photonic crystal slab cavities,�?? Appl. Phys. Lett. 79, 4289�??4291 (2001).
    [CrossRef]
  3. Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds., (World Scientific, Singapore, 1996).
  4. H. J. Kimble, �??Strong Interactions of Single Atoms and Photons in Cavity QED,�?? Physica Scripta T76, 127�??137 (1998).
    [CrossRef]
  5. P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imomoglu, �??A Quantum Dot Single-Photon Turnstile Device,�?? Science 290, 2282�??2285 (2000).
    [CrossRef] [PubMed]
  6. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, �??Triggered Single Photons from a Quantum Dot,�?? Phys. Rev. Lett. 86, 1502�??1505 (2001).
    [CrossRef] [PubMed]
  7. J. Vu¡ckovic, M. Lon¡car, H. Mabuchi, and A. Scherer, �??Design of photonic crystal microcavities for cavity QED,�?? Phys. Rev. E 65 (2002).
  8. K. Srinivasan and O. Painter, �??Momentum space design of high-Q photonic crystal optical cavities,�?? Opt. Express 10, 670�??684 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670</a>.
    [CrossRef] [PubMed]
  9. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, �??High-quality-factor and small-mode-volume hexapole modes in photoniccrystal-slab nanocavities,�?? Appl. Phys. Lett. 83, 4294�??4296 (2003).
    [CrossRef]
  10. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, �??Experimental demonstration of a high quality factor photonic crystal microcavity,�?? Appl. Phys. Lett. 83, 1915�??1917 (2003).
    [CrossRef]
  11. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944�??947 (2003).
    [CrossRef] [PubMed]
  12. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, �??Optical fiber based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,�?? submitted to Phys. Rev. Lett., Sept. 2003 (available at <a href="http://arxiv.org/quant-ph/abs/0309190">http://arxiv.org/quant-ph/abs/0309190</a>).
  13. O. Painter, K. Srinivasan, and P. Barclay, �??A Wannier-like Equation for Photon States of Locally Perturbed Photonic Crystals,�?? Phys. Rev. B 68, 035214 (2003).
    [CrossRef]
  14. K. Srinivasan and O. Painter, �??Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals,�?? Opt. Express 11, 579�??593 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-579">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-579</a>.
    [CrossRef] [PubMed]
  15. J. Knight, G. Cheung, F. Jacques, and T. Birks, �??Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,�?? Opt. Lett. 22, 1129�??1131 (1997).
    [CrossRef] [PubMed]
  16. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, �??Theoretical investigation of a two-dimensional photonic crystal slab with truncated air holes,�?? Appl. Phys. Lett. 82, 1661�??1663 (2003).
    [CrossRef]

Appl. Phys. Lett. (4)

T. Yoshie, J. Vu¡ckovic, A. Scherer, H. Chen, and D. Deppe, �??High quality two-dimensional photonic crystal slab cavities,�?? Appl. Phys. Lett. 79, 4289�??4291 (2001).
[CrossRef]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, �??High-quality-factor and small-mode-volume hexapole modes in photoniccrystal-slab nanocavities,�?? Appl. Phys. Lett. 83, 4294�??4296 (2003).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, �??Experimental demonstration of a high quality factor photonic crystal microcavity,�?? Appl. Phys. Lett. 83, 1915�??1917 (2003).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, �??Theoretical investigation of a two-dimensional photonic crystal slab with truncated air holes,�?? Appl. Phys. Lett. 82, 1661�??1663 (2003).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944�??947 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

O. Painter, K. Srinivasan, and P. Barclay, �??A Wannier-like Equation for Photon States of Locally Perturbed Photonic Crystals,�?? Phys. Rev. B 68, 035214 (2003).
[CrossRef]

Phys. Rev. E (1)

J. Vu¡ckovic, M. Lon¡car, H. Mabuchi, and A. Scherer, �??Design of photonic crystal microcavities for cavity QED,�?? Phys. Rev. E 65 (2002).

Phys. Rev. Lett. (1)

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, �??Triggered Single Photons from a Quantum Dot,�?? Phys. Rev. Lett. 86, 1502�??1505 (2001).
[CrossRef] [PubMed]

Physica Scripta (1)

H. J. Kimble, �??Strong Interactions of Single Atoms and Photons in Cavity QED,�?? Physica Scripta T76, 127�??137 (1998).
[CrossRef]

Science (2)

P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imomoglu, �??A Quantum Dot Single-Photon Turnstile Device,�?? Science 290, 2282�??2285 (2000).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Two-Dimensional Photonic Band-Gap Defect Mode Laser,�?? Science 284, 1819�??1824 (1999).
[CrossRef] [PubMed]

Other (2)

Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds., (World Scientific, Singapore, 1996).

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, �??Optical fiber based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,�?? submitted to Phys. Rev. Lett., Sept. 2003 (available at <a href="http://arxiv.org/quant-ph/abs/0309190">http://arxiv.org/quant-ph/abs/0309190</a>).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) FDTD calculated magnetic field amplitude (|B|) in the center of the optically thin membrane for the fundamental A20 mode. (b) Scanning electron microscope image of a fabricated Si PC microcavity with a graded defect design (PC-5 described below).

Fig. 2.
Fig. 2.

Grade in the normalized hole radius (r/a) along the central and ŷ axes of square lattice PC cavities such as those shown in Fig. 1. Cavity r/a profiles for (a,b) FDTD cavity designs and (c,d) microfabricated Si cavities.

Fig. 3.
Fig. 3.

(a) Schematic illustrating the fiber taper probe measurement setup. (b) SEM image of an array of undercut PC cavities (white box indicates position of one device within the array). (c) Measured data (blue dots) and exponential fit (red curve) for linewidth vs. taper-PC gap of the A20 mode in PC-5. (Inset) Taper transmission for this device when the taper-PC gap is 350 nm. (d) Same as (c) for PC-6 (here, the taper transmission in the inset is shown when Δz=650 nm). The transmission curves are normalized relative to transmission in the absence of the PC cavity.

Tables (1)

Tables Icon

Table 1. Theoretical (PC-A through PC-E) and experimental (PC-1 through PC-7) normalized frequency (a/λo ) and quality factor (Q) values for the A20 mode of cavities with profiles shown in Fig. 2.

Metrics