Abstract

We demonstrate a general procedure for varying the repetition rate of a modelocked Ti:sapphire laser using an asymmetric focusing geometry. Using this procedure, we have made an extended length cavity with a repetition rate of 45 MHz, and a reduced length cavity with a repetition rate of 275 MHz, each of which generates sub-20 fs pulses. This procedure allows the repetition rate of the laser to be more precisely tailored for a variety of applications without compromise in performance.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, �??60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,�?? Opt. Lett. 16, 42-44 (1991).
    [CrossRef] [PubMed]
  2. M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, �??Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,�?? Opt. Lett. 18, 977-979 (1993).
    [CrossRef] [PubMed]
  3. A. Baltuska, Z. Wei, M.S. Pshenichnikov, D. A. Wiersma, and R. Szipocs, �??All-solid-state cavity-dumped sub-5-fs laser,�?? Appl. Phys. B. 65, 175-188 (1997).
    [CrossRef]
  4. Y. H. Liau, A. N. Unterreiner, and N. F. Scherer, �??Femtosecond-pulse cavity-dumped solid-state oscillator design and application to ultrafast microscopy,�?? Appl. Opt. 38, 7386-7392 (1999).
    [CrossRef]
  5. A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, �??A 36 nJ-15.5 MHz extended-cavity Ti:sapphire oscillator,�?? presented at the Conference on Lasers and Electro-Optics, Baltimore, Maryland, (1999).
  6. A. M. Kowalevicz, Jr., A. Tucay Zare, F. X. Kärtner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, �??Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens modelocked Ti:Al2O3 oscillator,�?? Opt. Lett. 28, 1597-1599 (2003).
    [CrossRef] [PubMed]
  7. J. H. Sung, K. Hong, Y. H. Cha, and C. H. Nam, �??13-fs, 1-MW Ti:Sapphire Laser Oscillator in a Long-Cavity Configuration,�?? Jpn. J. Appl. Phys. 41, L931-L934 (2002).
    [CrossRef]
  8. A. G. Fox and T. Li, �??Computer-simulation of laser resonators �?? retrospective view,�?? IEEE J. Quantum. Electron. 15, D74-xD74 (1979).
    [CrossRef]
  9. S. Chu, T. Liu, C. Sun, C. Lin, and H. Tsai, �??Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,�?? Opt. Express 11, 933-938 (2003), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933</a>
    [CrossRef] [PubMed]
  10. A. Bartels, T. Dekorsy, and H. Kurz, �??Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,�?? Opt. Lett. 24, 996-998 (1999).
    [CrossRef]
  11. A. Bartels and H. Kurz, �??Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate,�?? Opt. Lett. 27, 1839-1841 (2002).
    [CrossRef]
  12. M. Ramaswamy-Paye and J. G. Fujimoto, �??Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers,�?? Opt. Lett. 19, 1756-1758 (1994).
    [CrossRef] [PubMed]
  13. Z. Liu, S. Izumida, C. Liu, N. Sarukura, T. Hikita, Y. Segawa, T. Hatani, T. Sugaya, T. Nakagawa, and Y. Sugiyama, �??1-GHz repetition-rate mode-locked Ti:sapphire laser using a saturable Bragg reflector,�?? Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 29.
  14. A. Stingl, C. Spielmann, R. Szipöcs, and F. Krausz, �??Compact high-repetition-rate femtosecond lasers using chirped mirrors,�?? in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 66-67.
  15. V. Magni, G. Cerullo , and S. De Silvestri,�??Closed form Gaussian beam analysis of resonators containing a Kerr medium for femtosecond lasers,�?? Opt. Commun. 101, 365-370 (1993)
    [CrossRef]
  16. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, �??Ultrabroadband femtosecond lasers,�?? IEEE J. Quantum. Electron. 30, 1100-1114 (1994).
    [CrossRef]
  17. O. E. Martinez and J. L. A. Chilla, "Self-mode-locking of Ti:sapphire lasers: a matrix formalism," Opt. Lett. 17, 1210-1212 (1992).
    [CrossRef] [PubMed]
  18. I. P. Christov, V. Stoev, M. Murnane, and H. Kapteyn, "Mode-locking with a compensated space-time astigmatism," Opt. Lett. 20, 2111-2113 (1995).
    [CrossRef] [PubMed]
  19. I. P. Christov, H. C. Kapteyn, M. M. Murnane, C. P. Huang, and J. P. Zhou, "Space-Time Focusing of Femtosecond Pulses in a Ti-Sapphire Laser," Opt. Lett. 20, 309-311 (1995).
    [CrossRef] [PubMed]
  20. A. Penzkofer, M. Wittmann, M. Lorenz, E. Siegert, and S. Macnamara, �??Kerr lens effects in a folded-cavity four-mirror linear resonator,�?? Opt. Quantum. Electron. 28, 423-442 (1996).
    [CrossRef]
  21. H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, �??Astigmatically compensated cavities for CW dye lasers,�?? IEEE J. Quantum. Electron. QE-8, 373-379 (1972).
    [CrossRef]
  22. S. Uemura and K Miyazaki, �??Femtosecond Cr:LiSAF laser pumped by a single diode laser,�?? Opt. Commun. 138, 330-332 (1997).
    [CrossRef]
  23. J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, �??Highly Compact and Efficient Femtosecond Cr:LiSAF Lasers,�?? IEEE J. Quantum. Electron. 38, 360-368 (2002).
    [CrossRef]
  24. R. Trebino and D. J. Kane, �??Using phase retrieval to measure the intensity and phase of ultrashort pulses --frequency-resolved optical gating.�?? J. Opt. Soc. Am. A 10, 11 (1993).
    [CrossRef]

Appl. Opt.

Appl. Phys. B

A. Baltuska, Z. Wei, M.S. Pshenichnikov, D. A. Wiersma, and R. Szipocs, �??All-solid-state cavity-dumped sub-5-fs laser,�?? Appl. Phys. B. 65, 175-188 (1997).
[CrossRef]

CLEO 1996

Z. Liu, S. Izumida, C. Liu, N. Sarukura, T. Hikita, Y. Segawa, T. Hatani, T. Sugaya, T. Nakagawa, and Y. Sugiyama, �??1-GHz repetition-rate mode-locked Ti:sapphire laser using a saturable Bragg reflector,�?? Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 29.

A. Stingl, C. Spielmann, R. Szipöcs, and F. Krausz, �??Compact high-repetition-rate femtosecond lasers using chirped mirrors,�?? in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 66-67.

CLEO 1999

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, �??A 36 nJ-15.5 MHz extended-cavity Ti:sapphire oscillator,�?? presented at the Conference on Lasers and Electro-Optics, Baltimore, Maryland, (1999).

IEEE J. Quantum Electron

A. G. Fox and T. Li, �??Computer-simulation of laser resonators �?? retrospective view,�?? IEEE J. Quantum. Electron. 15, D74-xD74 (1979).
[CrossRef]

IEEE J. Quantum Electron.

J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, �??Highly Compact and Efficient Femtosecond Cr:LiSAF Lasers,�?? IEEE J. Quantum. Electron. 38, 360-368 (2002).
[CrossRef]

IEEE J. Quantum. Electron.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, �??Astigmatically compensated cavities for CW dye lasers,�?? IEEE J. Quantum. Electron. QE-8, 373-379 (1972).
[CrossRef]

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, �??Ultrabroadband femtosecond lasers,�?? IEEE J. Quantum. Electron. 30, 1100-1114 (1994).
[CrossRef]

J. Opt. Soc. Am A

R. Trebino and D. J. Kane, �??Using phase retrieval to measure the intensity and phase of ultrashort pulses --frequency-resolved optical gating.�?? J. Opt. Soc. Am. A 10, 11 (1993).
[CrossRef]

Jpn. Appl. Phys.

J. H. Sung, K. Hong, Y. H. Cha, and C. H. Nam, �??13-fs, 1-MW Ti:Sapphire Laser Oscillator in a Long-Cavity Configuration,�?? Jpn. J. Appl. Phys. 41, L931-L934 (2002).
[CrossRef]

Opt. Commun.

V. Magni, G. Cerullo , and S. De Silvestri,�??Closed form Gaussian beam analysis of resonators containing a Kerr medium for femtosecond lasers,�?? Opt. Commun. 101, 365-370 (1993)
[CrossRef]

S. Uemura and K Miyazaki, �??Femtosecond Cr:LiSAF laser pumped by a single diode laser,�?? Opt. Commun. 138, 330-332 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

A. Bartels, T. Dekorsy, and H. Kurz, �??Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,�?? Opt. Lett. 24, 996-998 (1999).
[CrossRef]

A. Bartels and H. Kurz, �??Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate,�?? Opt. Lett. 27, 1839-1841 (2002).
[CrossRef]

M. Ramaswamy-Paye and J. G. Fujimoto, �??Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers,�?? Opt. Lett. 19, 1756-1758 (1994).
[CrossRef] [PubMed]

A. M. Kowalevicz, Jr., A. Tucay Zare, F. X. Kärtner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, �??Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens modelocked Ti:Al2O3 oscillator,�?? Opt. Lett. 28, 1597-1599 (2003).
[CrossRef] [PubMed]

D. E. Spence, P. N. Kean, and W. Sibbett, �??60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,�?? Opt. Lett. 16, 42-44 (1991).
[CrossRef] [PubMed]

M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, �??Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,�?? Opt. Lett. 18, 977-979 (1993).
[CrossRef] [PubMed]

O. E. Martinez and J. L. A. Chilla, "Self-mode-locking of Ti:sapphire lasers: a matrix formalism," Opt. Lett. 17, 1210-1212 (1992).
[CrossRef] [PubMed]

I. P. Christov, V. Stoev, M. Murnane, and H. Kapteyn, "Mode-locking with a compensated space-time astigmatism," Opt. Lett. 20, 2111-2113 (1995).
[CrossRef] [PubMed]

I. P. Christov, H. C. Kapteyn, M. M. Murnane, C. P. Huang, and J. P. Zhou, "Space-Time Focusing of Femtosecond Pulses in a Ti-Sapphire Laser," Opt. Lett. 20, 309-311 (1995).
[CrossRef] [PubMed]

Opt. Quantum. Electron.

A. Penzkofer, M. Wittmann, M. Lorenz, E. Siegert, and S. Macnamara, �??Kerr lens effects in a folded-cavity four-mirror linear resonator,�?? Opt. Quantum. Electron. 28, 423-442 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Diagram of the standard Ti:sapphire cavity.

Fig. 2.
Fig. 2.

Diagram of the low repetition rate cavity.

Fig. 3.
Fig. 3.

(a) The deconvolved pulse width and (b) experimental spectrum for the low repetition rate laser.

Fig. 4.
Fig. 4.

Diagram of the high repetition rate cavity.

Fig. 5.
Fig. 5.

(a) The deconvolved pulse width and (b) experimental spectrum for the high repetition rate laser.

Tables (2)

Tables Icon

Table 1. Cavity parameters for ABCD matrices

Tables Icon

Table 2. Astigmatism compensation angles

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( 1 R ( R 4 ( L + d ) + 8 Ld R ) 2 R ( R ( L + d ) 4 Ld 2 d 2 + 4 Ld 2 R ) 4 R ( 2 L R 1 ) 1 R ( R 4 ( L + d ) + 8 Ld R ) ) .
( 1 0 4 R ( 2 L R 1 ) 1 ) .
L b = 1 2 [ ( R b R a ) 2 ( 2 L a R a ) + R b ] .
cos θ = 1 c 2 n L R ( 1 n L 2 1 ) 1 R ( l c 2 n L ) 2 ( 1 1 n L 2 ) 2 + R 2

Metrics