Abstract

A simple method is presented for visual detection of pulse asymmetry in ultrashort laser pulses, based on an unbalanced modified spectrum auto-interferometric correlation. It may be experimentally realized using a second order interferometric autocorrelator coupled with a fast data analysis computer program or electronic hardware. This method should permit real time visual detection of a very small amount of pulse asymmetry without any “direction of time” ambiguity, with a much higher sensitivity compared to unbalanced third order correlation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G.A.Mourou, C.P.J.Barty, and M.D.Parry, �??Ultrahigh intensity lasers: Physics of the extreme on a table top,�?? Phys. Today 51, 22-28 (1998).
    [CrossRef]
  2. K.J.Mendham, J.W.G.Tisch, M.B.Mason, N.Hay, and J.P.Marangos, �??Control of laser heating in clusters through variation in temporal pulse shape,�?? Opt. Express 11, 1357-1364 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1357">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1357</a>
    [CrossRef] [PubMed]
  3. M.Hentschel, S.Uemura, Z.Cheng, S.Sartania, G.Tempea, Ch.Spielmann, and F.Krausz, �??High dynamic range pulse front steepening of amplified femtosecond pulses by third order dispersion,�?? Appl. Phys. B 68, 145-148 (1999).
    [CrossRef]
  4. Cs. To'th, J. Faure, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, E. Esarey, and W. P. Leemans, �??Tunning of laser pulse shapes in grating based compressors for optimal electron acceleration in plasmas,�?? Opt. Lett. 28, 1823-1825 (2003)
    [CrossRef]
  5. C.B.Schroeder, E.Esarey, C.G.R.Geddes, Cs.Toth, B.A.Shadwick, J.V.Tilborg, J.Faure, and W.P.Leemans, �??Frequency chirp and pulse shape effects in self modulated laser wakefield accelerators,�?? Phys. of Plasmas 10, 2039-2046 (2003).
    [CrossRef]
  6. R. Buffa, and S.Cavalieri, �??Optical control of type I second harmonic generation with ultrafast laser pulses,�?? J. Opt. Soc. Am B 17, 1901-1905 (2000).
    [CrossRef]
  7. Z.Sacks, G.Mourou, and R.Danielius, �??Adjusting pulse-front tilt and pulse duration by use of a single-shot autocorrelator,�?? Opt. Lett. 26, 462-464 (2001).
    [CrossRef]
  8. M. Raghuramaiah, A.K. Sharma, P.A. Naik, and P.D. Gupta, �?? Simultaneous measurement of pulse front tilt and pulse duration of a femtosecond laser beam,�?? Opt. Commun. 223, 163-168 (2003)
    [CrossRef]
  9. D.J.Kane, and Rick Trebino, �??Characterization of arbitrary femtosecond pulses using frequency resolved optical gating,�?? IEEE J. Quantum Electronics 29, 571-579 (1993).
    [CrossRef]
  10. R.G.M.P. Koumans and A.Yariv, �??Time-resolved optical gating based on dispersive propagation: A new method to characterize optical pulses,�?? IEEE J. Quantum Electron. 36, 137-144 (2000).
    [CrossRef]
  11. C.Iaconis, and I.A.Walmsley, �??Spectral phase interferometry for direct electrical field reconstruction of ultrashort optical pulses,�?? Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  12. S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, �??Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE,�?? Opt. Express 11, 491�??501(2003) <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 11-5-491">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-491</a>
    [CrossRef] [PubMed]
  13. D.N.Fittinghoff, J.L.Bowie, J.N.Sweetser, R.T.Jennings, M.A.Krumbugel, K.W.Delong, and R.Trebino, �??Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,�?? Opt. Lett. 21, 884-886 (1996).
    [CrossRef] [PubMed]
  14. J.W.Nicholsen, J.Jasapara, W.Rudolph, F.G.Omennetto and A.J.Tylor, �??Full field characterization of femtosecond pulses by spectrum and cross correlation measurements,�?? Opt. Lett. 24, 1774-1776 (1999)
    [CrossRef]
  15. S Luan, M H R Hutchinson, R A Smith, and F Zhou, �??High dynamic range third order correlation measurement of picosecond laser pulse shapes,�?? Meas. Sci. Technol. 4, 1426-1429, (1993).
    [CrossRef]
  16. P.Langlois and E.P.Ippen, �??Measurement of pulse asymmetry by three photon absorption autocorrelation in a GaAsP photodiode,�?? Opt. Lett. 24, 1868-1870 (1999).
    [CrossRef]
  17. J.C.M.Diels, J.J. Fontaine, I.C.McMichael, and F.Simoni,�?? Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,�?? Appl. Opt. 24, 1270-1282 (1985).
    [CrossRef] [PubMed]
  18. P. Wasylczyk, �??Ultracompact autocorrelator for femtosecond laser pulses,�?? Rev. Sci. Instrum. 72, 2221- 2223 (2001).
    [CrossRef]
  19. J.M.Roth, T.E.Murphy, and C.Xu, �??Ultrasensitive and high dynamic range two photon absorption in a GaAs photomultilpier tube,�?? Opt. Lett. 27, 2076-2078 (2002).
    [CrossRef]
  20. T. Hirayama and M. Sheik-Bahae, �??Real time chirp diagnostics for ultrashort laser pulses,�?? Opt. Lett. 27, 860 (2002).
    [CrossRef]
  21. A.K.Sharma, P.A.Naik, and P.D.Gupta, �??Estimation of higher order chirp in ultrashort laser pulses using modified spectrum auto-interferometric correlation,�?? Opt. Commun. 233, 431-437 (2004).
    [CrossRef]

Appl. Opt.

Appl. Phys. B

M.Hentschel, S.Uemura, Z.Cheng, S.Sartania, G.Tempea, Ch.Spielmann, and F.Krausz, �??High dynamic range pulse front steepening of amplified femtosecond pulses by third order dispersion,�?? Appl. Phys. B 68, 145-148 (1999).
[CrossRef]

IEEE J. Quantum Electron.

R.G.M.P. Koumans and A.Yariv, �??Time-resolved optical gating based on dispersive propagation: A new method to characterize optical pulses,�?? IEEE J. Quantum Electron. 36, 137-144 (2000).
[CrossRef]

IEEE J. Quantum Electronics

D.J.Kane, and Rick Trebino, �??Characterization of arbitrary femtosecond pulses using frequency resolved optical gating,�?? IEEE J. Quantum Electronics 29, 571-579 (1993).
[CrossRef]

J. Opt. Soc. Am B

R. Buffa, and S.Cavalieri, �??Optical control of type I second harmonic generation with ultrafast laser pulses,�?? J. Opt. Soc. Am B 17, 1901-1905 (2000).
[CrossRef]

Meas. Sci. Technol.

S Luan, M H R Hutchinson, R A Smith, and F Zhou, �??High dynamic range third order correlation measurement of picosecond laser pulse shapes,�?? Meas. Sci. Technol. 4, 1426-1429, (1993).
[CrossRef]

Opt. Commun.

A.K.Sharma, P.A.Naik, and P.D.Gupta, �??Estimation of higher order chirp in ultrashort laser pulses using modified spectrum auto-interferometric correlation,�?? Opt. Commun. 233, 431-437 (2004).
[CrossRef]

M. Raghuramaiah, A.K. Sharma, P.A. Naik, and P.D. Gupta, �?? Simultaneous measurement of pulse front tilt and pulse duration of a femtosecond laser beam,�?? Opt. Commun. 223, 163-168 (2003)
[CrossRef]

Opt. Express

Opt. Lett.

Cs. To'th, J. Faure, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, E. Esarey, and W. P. Leemans, �??Tunning of laser pulse shapes in grating based compressors for optimal electron acceleration in plasmas,�?? Opt. Lett. 28, 1823-1825 (2003)
[CrossRef]

C.Iaconis, and I.A.Walmsley, �??Spectral phase interferometry for direct electrical field reconstruction of ultrashort optical pulses,�?? Opt. Lett. 23, 792-794 (1998).
[CrossRef]

J.W.Nicholsen, J.Jasapara, W.Rudolph, F.G.Omennetto and A.J.Tylor, �??Full field characterization of femtosecond pulses by spectrum and cross correlation measurements,�?? Opt. Lett. 24, 1774-1776 (1999)
[CrossRef]

P.Langlois and E.P.Ippen, �??Measurement of pulse asymmetry by three photon absorption autocorrelation in a GaAsP photodiode,�?? Opt. Lett. 24, 1868-1870 (1999).
[CrossRef]

D.N.Fittinghoff, J.L.Bowie, J.N.Sweetser, R.T.Jennings, M.A.Krumbugel, K.W.Delong, and R.Trebino, �??Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,�?? Opt. Lett. 21, 884-886 (1996).
[CrossRef] [PubMed]

Z.Sacks, G.Mourou, and R.Danielius, �??Adjusting pulse-front tilt and pulse duration by use of a single-shot autocorrelator,�?? Opt. Lett. 26, 462-464 (2001).
[CrossRef]

T. Hirayama and M. Sheik-Bahae, �??Real time chirp diagnostics for ultrashort laser pulses,�?? Opt. Lett. 27, 860 (2002).
[CrossRef]

J.M.Roth, T.E.Murphy, and C.Xu, �??Ultrasensitive and high dynamic range two photon absorption in a GaAs photomultilpier tube,�?? Opt. Lett. 27, 2076-2078 (2002).
[CrossRef]

Opt.Express

S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, �??Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE,�?? Opt. Express 11, 491�??501(2003) <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 11-5-491">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-491</a>
[CrossRef] [PubMed]

Phys. of Plasmas

C.B.Schroeder, E.Esarey, C.G.R.Geddes, Cs.Toth, B.A.Shadwick, J.V.Tilborg, J.Faure, and W.P.Leemans, �??Frequency chirp and pulse shape effects in self modulated laser wakefield accelerators,�?? Phys. of Plasmas 10, 2039-2046 (2003).
[CrossRef]

Phys. Today

G.A.Mourou, C.P.J.Barty, and M.D.Parry, �??Ultrahigh intensity lasers: Physics of the extreme on a table top,�?? Phys. Today 51, 22-28 (1998).
[CrossRef]

Rev. Sci. Instrum.

P. Wasylczyk, �??Ultracompact autocorrelator for femtosecond laser pulses,�?? Rev. Sci. Instrum. 72, 2221- 2223 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Effect of temporal asymmetry on various unbalanced second order correlation signals for k=0.36 : (a) A laser pulse with asymmetry parameter of 0.1; (b) intensity correlation signal; (c) IAC signal; (d) UMOSAIC signal S1(τ); (e) An asymmetric laser pulse with opposite direction of time ; and (f) corresponding UMOSAIC signal. The symmetric sech2 (t/tp) pulse of the same FWHM duration as that of the asymmetric pulses (a and e) is also shown by dash-dot lines for visual illustration.

Fig. 2.
Fig. 2.

Variation of the ratio of UMOSAIC signal peaks (i.e. P1/P2) : (a) with intensity ratio k; (b) with pulse asymmetry parameter tasm. The variation of IAC signal contrast ratio with intensity ratio k is also shown in Fig.2.(a)

Fig. 3.
Fig. 3.

Various autocorrelation and UMOSAIC signals for k=0.04 and tasm=0.05 : (a) IAC signal; (b) Intensity correlation ; (c) UMOSAIC signal F21(τ); (d) UMOSAIC signal F22(τ); (e) UMOSAIC signal S1(τ)

Fig. 4.
Fig. 4.

A comparison of the UMOSAIC and third order intensity correlation signals for detection of pulse asymmetry (tasm=0.05) for k=0.36: (a) normalized unbalanced third order intensity correlation; (b) normalized UMOSAIC signal S1(τ).

Fig. 5.
Fig. 5.

A comparison of the second order UMOSAIC and third order intensity correlation signals for detection of double pulse for k=0.04: (a) A double pulse with A=10-3 and td=5tp; (b) normalized unbalanced third order intensity correlation; (c) normalized UMOSAIC signal f21(τ). (d) normalized UMOSAIC signal S1(τ). (Note that logarithmic scale is used on vertical axis to show the small amplitude of the second pulse)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S 21 AC ( τ ) 1 + k 2 + 4 G 2 ( τ ) + 8 F 21 ( τ ) cos ω o τ + 2 F 22 ( τ ) cos 2 ω o τ .
G 2 ( τ ) = k [ I ( t ) I ( t τ ) d t .
F 21 ( τ ) = ( 1 / 2 ) [ k 1 / 2 I ( t ) + k 3 / 2 I ( t τ ) ] E ( t ) E * ( t τ ) d t .
F 22 ( τ ) = k E 2 ( t ) E * 2 ( t τ ) d t .
S 1 ( τ ) = f 21 ( τ ) f 22 ( τ ) .
S 2 ( τ ) = f 21 ( τ ) g 2 ( τ ) .
S 3 ( τ ) = g 2 ( τ ) f 22 ( τ ) + d c .

Metrics