Abstract

We report on a single-mode photonic crystal fiber with attenuation and effective area at 1550 nm of 0.48 dB/km and 130 µm2, respectively. This is, to our knowledge, the lowest loss reported for a PCF not made from VAD prepared silica and at the same time the largest effective area for a low-loss (<1 dB/km) PCF. We briefly discuss the future applications of PCFs for data transmission and show for the first time, both numerically and experimentally, how the group velocity dispersion is related to the mode field diameter.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Tajima, K. Nakajima, K. Kurokawa, N. Yoshizawa, and M. Ohashi, "Low-loss photonic crystal fibers," Optical fiber communications conference, OFC 2002 (Anaheim, CA, USA), pp. 523-524 (2002).
  2. L. Farr, J. C. Knight, B. J. Mangan, and P. J. Roberts, "Low loss photonic crystal fibre," 28th European conference on optical communication (Copenhagen, Denmark), PD1-3, (2002).
  3. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, "Ultra low loss and long length photonic crystal fiber," Optical fiber communications conference, OFC (Anaheim, CA, USA), PD1, (2003).
  4. K. Tajima, J. Zhou, K. Kurokawa, and K. Nakajima, "Low water peak photonic crystal fibers," 29th European conference on optical communication ECOC'03 (Rimini, Italy), pp. 42-43 (2003).
  5. C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollw-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  6. N.A. Mortensen and J.R. Folkenberg, "Low-loss criterion and effective area considerations for photonic crystal fibers," J. Opt. A: Pure Appl. Opt. 5, 163-167 (2003).
    [CrossRef]
  7. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, "Analysis of OH absorption bands in synthetic silica," J. Non-Cryst. Solids 203, 19-26 (1996).
    [CrossRef]
  8. M. D. Nielsen and N. A. Mortensen, "Photonic crystal fiber design based on the V-parameter," Opt. Express 11, 2762-2768 (2003) <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2762</a>.
    [CrossRef] [PubMed]
  9. M.D. Nielsen, J.R. Folkenberg, N.A. Mortensen, and A. Bjarklev, "Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers," Opt. Express 12, 430-435 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-430">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-430</a>.
    [CrossRef] [PubMed]
  10. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, "Singlemode photonic crystal fiber with effevtive area of 600 µm2 and low bending loss," Electron. Lett. 39, 1802-1803 (2004).
    [CrossRef]
  11. S.G. Johnson and J.D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>.
    [CrossRef] [PubMed]
  12. J. Lægsgaard, A. Bjarklev, and S. E. B. Libori, "Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation," J. Opt. Soc. Am. B 20, 443-448 (2003).
    [CrossRef]
  13. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, Inc., 1997)
  14. T. Kato, M. Hirano, M. Onishi, and M. Nishimura, "Ultra-low nonlinearity low-loss pure silica core fiber for long-haul WDM transmission," Electron. Lett. 35, 1615-1617 (1999).
    [CrossRef]
  15. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, "Highly Nonlinear Photonic Crystal Fiber with Zero-Dispersion at 1.55 µm," Optical fiber Communications Conference OFC 2002 (Optical Society of America, Washington, D.C., 2002).

ECOC 2002 (1)

L. Farr, J. C. Knight, B. J. Mangan, and P. J. Roberts, "Low loss photonic crystal fibre," 28th European conference on optical communication (Copenhagen, Denmark), PD1-3, (2002).

ECOC 2003 (1)

K. Tajima, J. Zhou, K. Kurokawa, and K. Nakajima, "Low water peak photonic crystal fibers," 29th European conference on optical communication ECOC'03 (Rimini, Italy), pp. 42-43 (2003).

Electron. Lett. (2)

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, "Singlemode photonic crystal fiber with effevtive area of 600 µm2 and low bending loss," Electron. Lett. 39, 1802-1803 (2004).
[CrossRef]

T. Kato, M. Hirano, M. Onishi, and M. Nishimura, "Ultra-low nonlinearity low-loss pure silica core fiber for long-haul WDM transmission," Electron. Lett. 35, 1615-1617 (1999).
[CrossRef]

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, "Analysis of OH absorption bands in synthetic silica," J. Non-Cryst. Solids 203, 19-26 (1996).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

N.A. Mortensen and J.R. Folkenberg, "Low-loss criterion and effective area considerations for photonic crystal fibers," J. Opt. A: Pure Appl. Opt. 5, 163-167 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollw-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

OFC 2002 (2)

K. Tajima, K. Nakajima, K. Kurokawa, N. Yoshizawa, and M. Ohashi, "Low-loss photonic crystal fibers," Optical fiber communications conference, OFC 2002 (Anaheim, CA, USA), pp. 523-524 (2002).

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, "Highly Nonlinear Photonic Crystal Fiber with Zero-Dispersion at 1.55 µm," Optical fiber Communications Conference OFC 2002 (Optical Society of America, Washington, D.C., 2002).

OFC 2003 (1)

K. Tajima, J. Zhou, K. Nakajima, and K. Sato, "Ultra low loss and long length photonic crystal fiber," Optical fiber communications conference, OFC (Anaheim, CA, USA), PD1, (2003).

Opt. Express (3)

Other (1)

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, Inc., 1997)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Optical micrograph of the fabricated PCF.

Fig. 2.
Fig. 2.

Measured spectral attenuation (left) and OTDR trace at 1550 nm (right) of the fabricated PCF.

Fig. 3.
Fig. 3.

GVD at 1550 nm as function of the MFD. The solid line indicates numerical results and the dashed line indicates DM. Measured values at 1550 nm for 8 different PCF are indicated by circles while the cross represents independent data from Ref. [4].

Tables (1)

Tables Icon

Table 1. Structural parameters, calculated MFD and measured dispersion of the tested PCFs

Metrics