Abstract

Abstract This paper introduces a deposition method to create a multi-layered waveguide with alternating layers of high index of refraction contrast. A very thin Ag layer, practically transparent in the mid-IR radiation wavelengths of CO2 and Er-YAG lasers, was created. This enabled a good contrast of the indices of refraction of silver/silver iodide. Theoretical calculations as well as experiments have shown that transmission was higher at these wavelengths for two pair layers, in comparison to one pair of silver/silver iodide. Windows of transmittance and small sensitivity to bending were demonstrated for those two pair layer waveguides. This method could be extended to an increased number of pairs to configure a true photonic band gap waveguide.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E.J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission of Lasers,” Bell Sys. Tech. J. 43, 1783 (1964).
  2. J.A. Harrington, Infrared Fiber Optics and Their Applications, SPIE press, (2004).
    [CrossRef]
  3. N. Croitoru, J. Dror, and I. Gannot, “Characterization of hollow plastic fibers for the transmission of infra-red radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [CrossRef] [PubMed]
  4. M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
    [CrossRef]
  5. M. Miyagi and S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).
    [CrossRef] [PubMed]
  6. I. Gannot and Moshe Ben-David, “Optical Fibers and Waveguides for Medical Applications,” Biomedical Photonics handbook,” CRC press, Chapter 7, pages 7.1–7.22, (2003).
  7. G. N. Merberg and J.A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
    [CrossRef] [PubMed]
  8. M. Saito, M. Takizawa, and M. Miyagi, “Optical and mechanical properties of infrared fibers,” J. Lightwave Technol. 6, 233–239 (1988).
    [CrossRef]
  9. J.A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fibers and Integrated Opt. 19, 211–227 (2000).
    [CrossRef]
  10. B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
    [CrossRef]
  11. P. O. Pedersen and J. A. Harrington, “Characterization of hollow glass waveguides (HGWs) with metal-sulfide dielectric coatings,” paper 5317-08, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).
  12. R. Kasahara, T. Katagiri, Y. Matsuura, and M. Miyagi, “Transmission properties of hollow glass fibers for the infrared fabricated by glass-drawing technique,” Paper 5317–31, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).
  13. I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).
  14. M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R. W. Alexander, and C.A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099 (1983).
    [CrossRef] [PubMed]
  15. H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
    [CrossRef]
  16. I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).
  17. D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, and N. Croitoru, “Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides” Appl. Opt. 28, 708 (1989).
    [CrossRef] [PubMed]
  18. D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
    [CrossRef]
  19. M. Ben-David and PhD Thesis, “Development of Hollow Waveguides or IR Radiation,” Tel-Aviv University, (2003).

2004 (1)

H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[CrossRef]

2002 (1)

B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[CrossRef]

2001 (1)

I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).

2000 (1)

J.A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fibers and Integrated Opt. 19, 211–227 (2000).
[CrossRef]

1993 (1)

1992 (1)

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
[CrossRef]

1991 (1)

D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[CrossRef]

1990 (2)

1989 (1)

1988 (1)

M. Saito, M. Takizawa, and M. Miyagi, “Optical and mechanical properties of infrared fibers,” J. Lightwave Technol. 6, 233–239 (1988).
[CrossRef]

1983 (1)

1964 (1)

E.J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission of Lasers,” Bell Sys. Tech. J. 43, 1783 (1964).

Alaluf, M.

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
[CrossRef]

Alexander, R. W.

Bell, R.J.

Bell, R.R.

Bell, S.E.

Ben-David, M.

I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).

M. Ben-David and PhD Thesis, “Development of Hollow Waveguides or IR Radiation,” Tel-Aviv University, (2003).

Ben-David, Moshe

I. Gannot and Moshe Ben-David, “Optical Fibers and Waveguides for Medical Applications,” Biomedical Photonics handbook,” CRC press, Chapter 7, pages 7.1–7.22, (2003).

Benoit, G

B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[CrossRef]

Croitoru,

D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[CrossRef]

Croitoru, N.

I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
[CrossRef]

N. Croitoru, J. Dror, and I. Gannot, “Characterization of hollow plastic fibers for the transmission of infra-red radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, and N. Croitoru, “Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides” Appl. Opt. 28, 708 (1989).
[CrossRef] [PubMed]

I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).

Dahan, R.

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
[CrossRef]

Dror, J.

Dror, N.

D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[CrossRef]

Du, H.

H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[CrossRef]

Fink, Y.

B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[CrossRef]

Gannot, I.

I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).

N. Croitoru, J. Dror, and I. Gannot, “Characterization of hollow plastic fibers for the transmission of infra-red radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

I. Gannot and Moshe Ben-David, “Optical Fibers and Waveguides for Medical Applications,” Biomedical Photonics handbook,” CRC press, Chapter 7, pages 7.1–7.22, (2003).

I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).

Gannot, J.

D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[CrossRef]

Goldenberg, E.

Gong, J.

H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[CrossRef]

Harrington, J. A.

P. O. Pedersen and J. A. Harrington, “Characterization of hollow glass waveguides (HGWs) with metal-sulfide dielectric coatings,” paper 5317-08, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).

Harrington, J.A.

J.A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fibers and Integrated Opt. 19, 211–227 (2000).
[CrossRef]

G. N. Merberg and J.A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
[CrossRef] [PubMed]

J.A. Harrington, Infrared Fiber Optics and Their Applications, SPIE press, (2004).
[CrossRef]

Hart, SD

B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[CrossRef]

Inberg, A.

I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).

I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).

Joannopoulos, JD

B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[CrossRef]

Karasawa, S.

Kasahara, R.

R. Kasahara, T. Katagiri, Y. Matsuura, and M. Miyagi, “Transmission properties of hollow glass fibers for the infrared fabricated by glass-drawing technique,” Paper 5317–31, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).

Katagiri, T.

R. Kasahara, T. Katagiri, Y. Matsuura, and M. Miyagi, “Transmission properties of hollow glass fibers for the infrared fabricated by glass-drawing technique,” Paper 5317–31, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).

Lee, S.W.

H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[CrossRef]

Long, L.L.

Marcatili, E.J.

E.J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission of Lasers,” Bell Sys. Tech. J. 43, 1783 (1964).

Matsuura, Y.

R. Kasahara, T. Katagiri, Y. Matsuura, and M. Miyagi, “Transmission properties of hollow glass fibers for the infrared fabricated by glass-drawing technique,” Paper 5317–31, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).

Mendlovic, D.

Mendlovic, I.

D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[CrossRef]

Merberg, G. N.

Miyagi, M.

M. Miyagi and S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).
[CrossRef] [PubMed]

M. Saito, M. Takizawa, and M. Miyagi, “Optical and mechanical properties of infrared fibers,” J. Lightwave Technol. 6, 233–239 (1988).
[CrossRef]

R. Kasahara, T. Katagiri, Y. Matsuura, and M. Miyagi, “Transmission properties of hollow glass fibers for the infrared fabricated by glass-drawing technique,” Paper 5317–31, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).

Morhaim, D.

D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[CrossRef]

Ordal, M.A.

Oxman, M.

I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).

Pedersen, P. O.

P. O. Pedersen and J. A. Harrington, “Characterization of hollow glass waveguides (HGWs) with metal-sulfide dielectric coatings,” paper 5317-08, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).

Ruschin, S.

Saito, M.

M. Saito, M. Takizawa, and M. Miyagi, “Optical and mechanical properties of infrared fibers,” J. Lightwave Technol. 6, 233–239 (1988).
[CrossRef]

Schmeltzer, R. A.

E.J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission of Lasers,” Bell Sys. Tech. J. 43, 1783 (1964).

Sun, C.

H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[CrossRef]

Takizawa, M.

M. Saito, M. Takizawa, and M. Miyagi, “Optical and mechanical properties of infrared fibers,” J. Lightwave Technol. 6, 233–239 (1988).
[CrossRef]

Temelkuran, B

B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[CrossRef]

Thesis, PhD

M. Ben-David and PhD Thesis, “Development of Hollow Waveguides or IR Radiation,” Tel-Aviv University, (2003).

Ward, C.A.

Waynant, R. W.

I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).

Wen, L.S.

H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[CrossRef]

Appl. Opt. (5)

Bell Sys. Tech. J. (1)

E.J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission of Lasers,” Bell Sys. Tech. J. 43, 1783 (1964).

Fibers and Integrated Opt. (1)

J.A. Harrington, “A Review of IR Transmitting, Hollow Waveguides,” Fibers and Integrated Opt. 19, 211–227 (2000).
[CrossRef]

J. Appl. Phys. (1)

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878 (1992).
[CrossRef]

J. Lightwave Technol. (1)

M. Saito, M. Takizawa, and M. Miyagi, “Optical and mechanical properties of infrared fibers,” J. Lightwave Technol. 6, 233–239 (1988).
[CrossRef]

J. Optoelectron. Adv. Mat. (1)

I. Gannot, M. Ben-David, A. Inberg, and N. Croitoru, “Broadband omnidirectional IR flexible waveguides,” J. Optoelectron. Adv. Mat. 3, 933–935 (2001).

Mat. Lett. (1)

H. Du, S.W. Lee, J. Gong, C. Sun, and L.S. Wen, “Size effect of nano-copper films on complex optical constant and permittivity in infrared region,” Mat. Lett. 58, 1117 (2004).
[CrossRef]

Nature (1)

B Temelkuran, SD Hart, G Benoit, JD Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibers with large photonic band gaps for CO2 laser transmission,” Nature 420, (6916), (2002).
[CrossRef]

Opt. Eng. (1)

D. Morhaim, I. Mendlovic, J. Gannot, N. Dror, and Croitoru, “Ray model for transmission of IR radiation through multi bent cylindrical waveguides,” Opt. Eng. 3, 1886 (1991).
[CrossRef]

Other (6)

M. Ben-David and PhD Thesis, “Development of Hollow Waveguides or IR Radiation,” Tel-Aviv University, (2003).

I. Gannot, A. Inberg, M. Oxman, N. Croitoru, and R. W. Waynant, “Current status of flexible waveguides for infrared laser radiation transmission,” IEEE J. Sel. Top. Quantum Electron., 880–889 (1996).

P. O. Pedersen and J. A. Harrington, “Characterization of hollow glass waveguides (HGWs) with metal-sulfide dielectric coatings,” paper 5317-08, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).

R. Kasahara, T. Katagiri, Y. Matsuura, and M. Miyagi, “Transmission properties of hollow glass fibers for the infrared fabricated by glass-drawing technique,” Paper 5317–31, SPIE, OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, January (2004).

I. Gannot and Moshe Ben-David, “Optical Fibers and Waveguides for Medical Applications,” Biomedical Photonics handbook,” CRC press, Chapter 7, pages 7.1–7.22, (2003).

J.A. Harrington, Infrared Fiber Optics and Their Applications, SPIE press, (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The double pair layers waveguide cross-section. A tube made of Silica glass is the substrate. It is coated with a thick layer of Ag and two layers of AgI with a thin Ag layer in between.

Fig. 2.
Fig. 2.

Theoretical calculation, using the refined ray tracing program, of the transmission vs. wavelength for a waveguide with two pairs of Ag/AgI layers, (thickness of second Ag layer is 70 nm) with index of refraction (n) contrast 1.7≤nAg/nAgI≤6.36 for the same wavelength interval.

Fig. 3.
Fig. 3.

A measurement of the waveguide transmission vs. bending for two different lasers (CO2 and Er-YAG).

Fig. 4.
Fig. 4.

A FTIR measurement of a waveguide with 4 layers (Ag=300 nm, AgI=110 nm, Ag=70 nm and AgI=110 nm) transmission normalized vs. wavelength (2–14 µm range).

Fig. 5.
Fig. 5.

A FTIR measurement of a waveguide with 4 layers (Ag=300 nm, AgI=135 nm, Ag=70 nm and AgI=135 nm) transmission normalized vs. wavelength (2–14 µm range).

Fig. 6.
Fig. 6.

Measurements of Waveguides transmission of Er-YAG laser energy vs. bending.

Fig. 7.
Fig. 7.

Measurements of Waveguides transmission of CO2 laser energy vs. bending. The WG with Ag/AgI (t=135 nm) double pair structure demonstrated the smallest reduction for Er-YAG laser energy transmission with ΔT=3.85 %.

Tables (1)

Tables Icon

Table 1. Transmission of Er-YAG and CO2 lasers at different pair thicknesses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T i = I out I in
A i = 10 { int ( 1 2 tan ( Φ i ) log ( ρ ( Φ i ) ) }

Metrics