Abstract

Compact photonic crystal (PhC) filters will play a vital role in wavelength division multiplexing applications and they could be the stepping stones towards the realisation of dense and multifunctional photonic integrated circuits. Bragg grating concepts are applied to PhC filters to control their response by introducing suitable phase shifts and choosing appropriate locations and magnitudes. Moreover, the variation of the PhC hole size at the input and output regions could offer an extra degree of freedom in tailoring the filter characteristics. The ability to engineer and control the filter response of photonic crystal filters is investigated in this paper.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E.R Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith and E. P. Ippen, �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143-145 (1997).
    [CrossRef]
  2. T. F. Krauss, B. Vögele, C.R. Stanley and R. M. De La Rue, "Waveguide microcavity based on photonic microstructures," IEEE Photon. Technol. Lett. 9, 176-178 (1997).
    [CrossRef]
  3. A. S. Jugessur, P. Pottier and R. M. De La Rue, �??One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides,�?? Electron. Lett. 39, 367-368 (2003).
    [CrossRef]
  4. A. S. Jugessur, R. M. De La Rue, P. Pottier and P. Viktorovitch, �??One-dimensional photonic crystal microcavity filter with enhanced transmission�?? in IPR (Integrated Photonics Research) Proceedings, IFD2-1, (Optical Society of America, Vancouver 2002)
  5. R. Zengerle and O. Leminger, �??Phase-Shifted Bragg-Grating Filters with Improved Transmission characteristics,�?? J. Lightwave Technol. 13, 2354-2358 (1995).
    [CrossRef]
  6. G. Przyrembel, B. Kuhlow, and S. Schluter, �??Higher Order flat-top transmission waveguide filters in SOI�?? in ECOC-IOOC Proceedings, Symposium Tu 1.1.6, Rimini 2003.
  7. G. P. Agrawal and S. Radic, �??Phase-Shifted Fiber Bragg Gratings and their application for Wavelength Demultiplexing,�?? IEEE Photon. Technol. Lett. 6, 995-997 (1994).
    [CrossRef]

ECOC-IOOC Proceedings 2003 (1)

G. Przyrembel, B. Kuhlow, and S. Schluter, �??Higher Order flat-top transmission waveguide filters in SOI�?? in ECOC-IOOC Proceedings, Symposium Tu 1.1.6, Rimini 2003.

Electron. Lett. (1)

A. S. Jugessur, P. Pottier and R. M. De La Rue, �??One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides,�?? Electron. Lett. 39, 367-368 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. F. Krauss, B. Vögele, C.R. Stanley and R. M. De La Rue, "Waveguide microcavity based on photonic microstructures," IEEE Photon. Technol. Lett. 9, 176-178 (1997).
[CrossRef]

G. P. Agrawal and S. Radic, �??Phase-Shifted Fiber Bragg Gratings and their application for Wavelength Demultiplexing,�?? IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

IPR 2002 (1)

A. S. Jugessur, R. M. De La Rue, P. Pottier and P. Viktorovitch, �??One-dimensional photonic crystal microcavity filter with enhanced transmission�?? in IPR (Integrated Photonics Research) Proceedings, IFD2-1, (Optical Society of America, Vancouver 2002)

J. Lightwave Technol. (1)

R. Zengerle and O. Leminger, �??Phase-Shifted Bragg-Grating Filters with Improved Transmission characteristics,�?? J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

Nature (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E.R Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith and E. P. Ippen, �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143-145 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of PhC holes embedded in semiconductor ridge waveguide operating as a compound PhC microcavity filter.

Fig. 2.
Fig. 2.

Schematic of the PhC filter devices: (a) PhC filter with a single phase shift, (b) PhC filter with two phase shifts, k=0.8, (c) PhC filter with two phase shifts, k=1.

Fig. 3.
Fig. 3.

Computational spectral responses of devices shown in Figs. 2(a)–(c).

Fig. 4.
Fig. 4.

Computational transmission spectra of (a) single cavity, (b) two phase-shifts, (c) two phase-shifts with 23 % hole diameter size reduction.

Fig. 5.
Fig. 5.

Fabricated devices on AlGaAs/GaAs epitaxial layer: (a) 1-D PhC filter with a k value of 1, (b) several periods wide, two phase-shifts PhC filter with reduced hole diameter at input and output regions.

Fig. 6.
Fig. 6.

Experimental wavelength spectrum of 1-D PhC filter with a single phase-shift

Fig. 7.
Fig. 7.

Experimental wavelength spectrum of 1-D PhC filter with two phase shifts, k value of 0.8.

Fig. 8.
Fig. 8.

Experimental wavelength spectrum of 1-D PhC filter with two phase shifts, k value of 1.

Fig. 9.
Fig. 9.

Experimental and computational wavelength spectra of 3 µm PhC filter (a) two phase shifts (b) two phase shifts with 23 % hole diameter size reduction.

Metrics