Abstract

Refractive microlenses with more than 50 µm sag are fabricated using grayscale lithography. Mechanical assembly features are made simultaneously alongside the microlenses to facilitate high precision assembly of miniature optical systems. The microlens elements are formed using lithographic patterning of photosensitive hybrid sol-gel glass requiring no etch transfer to the substrate material. Grayscale lithography enables the straightforward patterning of aspheric lenses and arbitrary surfaces within the material depth. Lessons learned in the design of a grayscale photomask are described. Characterization of the fabricated lens elements is reported including lens shape, surface quality, and image quality of a complete assembled imaging system.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. H. O. Kärkkäinen, J. T. Rantala and M. R. Descour, �??Fabrication of micro-optical structures by applying negative-tone hybrid glass materials and grayscale lithography,�?? Electron. Lett. 38 (1), 23-24 (2002).
    [CrossRef]
  2. A. H. O. Kärkkäinen, J. T. Rantala, A. Maaninen, G. E. Jabbour and M. R. Descour , �??Siloxane based hybrid glass materials for binary and gray-scale mask photoimaging,�?? Adv. Mat. 14, 535-540 (2002).
    [CrossRef]
  3. A. H. O. Kärkkäinen, J. M. Tamkin, J. D. Rogers, D. R. Neal, O. E. Hormi, G. E. Jabbour, J. T. Rantala and M. R. Descour, �??Direct photolithographic deforming of organo-modified siloxane films for micro-optics fabrication,�?? Appl. Opt. 41 (19), 3988-3998 (2002).
    [CrossRef] [PubMed]
  4. M. R. Descour, A. H.O. Kärkkäinen, J. D. Rogers, C. Liang, B. Kilic, E. Madenci and J. T. Rantala; R. R. Richards-Kortum, E. V. Anslyn and R. D. Dupuis, �??Towards the development of miniaturized imaging systems for detection of pre-cancer,�?? IEEE J. Quantum Electron. 38 (2), 122-130 (2002).
    [CrossRef]
  5. X.-C. Yuan, W. X. Yu, N. G. Ngo and W. C. Cheong, �??Cost-effective fabrication of microlenses on hybrid solgel glass with a high-energy beam�??sensitive gray-scale mask,�?? Opt. Express 10, 303-308 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-303">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-303</a>
    [CrossRef] [PubMed]
  6. W. Yu and X.-C. Yuan, �??UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask,�?? Opt. Express, 11, 2253-2258 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2253">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2253</a>
    [CrossRef] [PubMed]
  7. C. Wu, HEBS Glass Gray Scale Lithography (CMI Product Information No. 01-88) <a href="http://www.canyonmaterials.com/hebsglass.html">http://www.canyonmaterials.com/hebsglass.html</a>
  8. S. Lippold, Optical Testing Operator�??s Guide (Wyko Corp., 1995), Sect. 4.
  9. G. Williby, Transmitted Wavefront Testing of Complex Optics, PhD Dissertation, Dec. 2003, Optical Sciences Center, University of Arizona
  10. G.A. Williby, D.G. Smith, R.A. Brumfield and J.E. Greivenkamp, "Interferometric Testing of Soft Contact Lenses," Optical Manufacturing and Testing V, Proc. SPIE 5180 329-339 (2003)
  11. J. Bennett, L. Mattson, Introduction to Surface Roughness and Scattering, Second Edition (Optical Society of America, Washington, D.C., 1999).
  12. R. V. Shack, Technical Report 32: Geometric vs. Diffraction Prediction of Properties of a Star Image in the Presence of an Isotropic Random Wavefront Disturbance (Optical Sciences, University of Arizona, 1963).
  13. Tucson Optical Research Corporation (TORC), 210 S. Plumer, Tucson AZ, 85719
  14. A.P. Tzannes, J.M. Mooney, �??Measurement of the modulation transfer function of infrared cameras,�?? Opt. Eng. 34 (6), 1808-1817 (1995).
    [CrossRef]

Adv. mat.

A. H. O. Kärkkäinen, J. T. Rantala, A. Maaninen, G. E. Jabbour and M. R. Descour , �??Siloxane based hybrid glass materials for binary and gray-scale mask photoimaging,�?? Adv. Mat. 14, 535-540 (2002).
[CrossRef]

Appl. Opt.

Electron. Lett.

A. H. O. Kärkkäinen, J. T. Rantala and M. R. Descour, �??Fabrication of micro-optical structures by applying negative-tone hybrid glass materials and grayscale lithography,�?? Electron. Lett. 38 (1), 23-24 (2002).
[CrossRef]

IEEE J. Quantum Electron.

M. R. Descour, A. H.O. Kärkkäinen, J. D. Rogers, C. Liang, B. Kilic, E. Madenci and J. T. Rantala; R. R. Richards-Kortum, E. V. Anslyn and R. D. Dupuis, �??Towards the development of miniaturized imaging systems for detection of pre-cancer,�?? IEEE J. Quantum Electron. 38 (2), 122-130 (2002).
[CrossRef]

Opt. Eng.

A.P. Tzannes, J.M. Mooney, �??Measurement of the modulation transfer function of infrared cameras,�?? Opt. Eng. 34 (6), 1808-1817 (1995).
[CrossRef]

Opt. Express

Proc. SPIE

G.A. Williby, D.G. Smith, R.A. Brumfield and J.E. Greivenkamp, "Interferometric Testing of Soft Contact Lenses," Optical Manufacturing and Testing V, Proc. SPIE 5180 329-339 (2003)

Other

J. Bennett, L. Mattson, Introduction to Surface Roughness and Scattering, Second Edition (Optical Society of America, Washington, D.C., 1999).

R. V. Shack, Technical Report 32: Geometric vs. Diffraction Prediction of Properties of a Star Image in the Presence of an Isotropic Random Wavefront Disturbance (Optical Sciences, University of Arizona, 1963).

Tucson Optical Research Corporation (TORC), 210 S. Plumer, Tucson AZ, 85719

C. Wu, HEBS Glass Gray Scale Lithography (CMI Product Information No. 01-88) <a href="http://www.canyonmaterials.com/hebsglass.html">http://www.canyonmaterials.com/hebsglass.html</a>

S. Lippold, Optical Testing Operator�??s Guide (Wyko Corp., 1995), Sect. 4.

G. Williby, Transmitted Wavefront Testing of Complex Optics, PhD Dissertation, Dec. 2003, Optical Sciences Center, University of Arizona

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Material response for hybrid glass showing surface height as a function of optical density for one set of exposure and development parameters.

Fig. 2.
Fig. 2.

Optical density versus radial distance dependence for the designed lens element grayscale photomask.

Fig. 3.
Fig. 3.

A schematic diagram of the optical components for the miniature imaging system (top) and the optical layout (bottom).

Fig. 4.
Fig. 4.

Comparison of two ways to encode lens shape in grayscale mask. The lens on the left has a uniform step height (uniform change in OD), but very narrow zones at the edge (varying zone size). The lens on the right has varying step heights, but uniform step widths making mask fabrication simpler and more reliable.

Fig. 5.
Fig. 5.

Comparison of a grayscale photomask written using annular zones (a-c) and a grayscale photomask written with pixels (d-f). Shown on the left (a, d) are schematics of the two techniques. In the center (b, e) are images from each photomask taken with a 10x microscope objective. On the right (c, f) are SEM images of the lens elements fabricated using the respective photomasks. Note the annular zone mask (top row) creates a radial spoke pattern visible in the mask (b) and in the fabricated lenses (c).

Fig. 6.
Fig. 6.

A scanning electron microscope image of the lens element surrounded by mechanical alignment features used for positioning the element in the complete system. The superimposed dotted-line represents the cuts that would be made by a dicing saw or scribe.

Fig. 7.
Fig. 7.

Profile of designed lens in red, actual measured profiles of fabricated lenses in green and blue, and a linearly scaled version of the designed profile in pink.

Fig. 8.
Fig. 8.

A schematic diagram of the optical components for the miniature imaging system (left) and an assembled prototype (right).

Fig. 9.
Fig. 9.

The central 100×100 µm area of an image formed by the 4M device of a 600 lp/mm grating (left). Right is an image of 10-30 µm diameter glass microspheres as imaged by 4M device in reflection mode.

Tables (1)

Tables Icon

Table 1. Measurements of lens curvatures

Metrics