Abstract

We propose a display technique that ensures security of visual information by use of visual cryptography. A displayed image appears as a completely random pattern unless viewed through a decoding mask. The display has a limited viewing zone with the decoding mask. We have developed a multi-color encryption code set. Eight colors are represented in combinations of a displayed image composed of red, green, blue, and black subpixels and a decoding mask composed of transparent and opaque subpixels. Furthermore, we have demonstrated secure information display by use of an LCD panel.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. Javidi and J. L. Horner, �??Optical pattern recognition for validation and security verification,�?? Opt. Eng. 33, 1752-1756 (1994).
    [CrossRef]
  2. P. Refregier and B. Javidi,P. Refregier and B. Javidi, �??Optical image encryption based on input plane and Fourier plane random encoding,�?? Opt. Lett. 20, 767-769 (1995).,�?? Opt. Lett. 20, 767-769 (1995).
    [CrossRef] [PubMed]
  3. S. Fukushima, T. Kurokawa, and Y. Sakai, �??Image Encipherment Based on Optical Parallel Processing Using Spatial Light Modulators,�?? IEEE Trans. Photonics Tech. Lett. 3, 1133-1135 (1991).
    [CrossRef]
  4. J. F. Heanue, M. C. Bashaw, and L. Hesselink, �??Encrypted holographic data storage based on orthogonal-phase-code multiplexing,�?? Appl. Opt. 34, 6012-6015 (1995).
    [CrossRef] [PubMed]
  5. R. K. Wang, I. A. Watson, and C. Chatwin, �??Random phase encoding for optical security,�?? Opt. Eng. 35, 2464-2469 (1996).
    [CrossRef]
  6. N. Yoshikawa, M. Itoh, and T. Yatagai, �??Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography,�?? Opt. Lett. 23, 1483-1485 (1998).
    [CrossRef]
  7. P. C. Mogensen and J. Glückstad, �??Phase-only optical encryption,�?? Opt. Lett. 25, 566-568 (2000).
    [CrossRef]
  8. T. Sasaki, H. Togo, J. Tanida, and Y. Ichioka, �??Stream cipher based on pseudorandom number generation with optical affine transformation,�?? Appl. Opt. 39, 2340-2346 (2000).
    [CrossRef]
  9. Z. Zalevsky, D. Mendlovic, U. Levy, and G. Shabtay, �??A new optical random coding technique for security systems,�?? Opt. Commun. 180, 15-20 (2000).
    [CrossRef]
  10. G. Unnikrishnan, M. Pohit, and K. Singh, �??A polarization encoded optical encryption system using ferroelectric spatial light modulator,�?? Opt. Commun. 185, 25-31 (2000).
    [CrossRef]
  11. P. C. Mogensen and J. Glückstad, �??Phase-only optical decryption of a fixed mask,�?? Appl. Opt. 40, 1226-1235 (2001).
    [CrossRef]
  12. J. Rosen and B. Javidi, �??Hidden images in halftone pictures,�?? Appl. Opt. 40, 3346-3353 (2001).
    [CrossRef]
  13. J. Ohtsubo and A. Fujimoto, �??Practical image encryption and decryption by phase-coding technique for optical security systems,�?? Appl. Opt. 41, 4848-4855 (2002).
    [CrossRef] [PubMed]
  14. B. Javidi and T. Nomura, �??Securing information by use of digital holography,�?? Opt. Lett. 25, 28-30 (2000).
    [CrossRef]
  15. S. Lai and M. A. Neifeld, �??Digital wavefront reconstruction and its application to image encryption,�?? Opt. Commun. 178, 283-289 (2000).
    [CrossRef]
  16. E. Tajahuerce and B. Javidi, �??Encrypting three-dimensional information with digital holography,�?? Appl. Opt. 39, 6595-6601 (2000).
    [CrossRef]
  17. X. Peng, L. Yu, and L. Cai, �??Double-lock for image encryption with virtual optical wavelength,�?? Opt. Express 10, 41-45 (2002), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-41">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-41</a>
    [CrossRef] [PubMed]
  18. O. Matoba and B. Javidi, �??Optical retrieval of encrypted digital holograms for secure real-time display,�?? Opt. Lett. 27, 321-323 (2002).
    [CrossRef]
  19. L. Yu, X. Peng, and L. Cai, �??Parameterized multi-dimensional data encryption by digital optics,�?? Opt. Commun. 203, 67-77 (2002).
    [CrossRef]
  20. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, �??Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,�?? Appl. Opt. 41, 6187-6192 (2002).
    [CrossRef] [PubMed]
  21. K. Aizawa and K. Kakami, �??Ubiquitous display controlled by mobile terminals,�?? IEICE Trans. Commun. E85-B, 2214-2217 (2002), <a href= " http://search.ieice.org/2002/files/e000b10.htm#e85-b,10,2214" >http://search.ieice.org/2002/files/e000b10.htm#e85-b,10,2214</a>
  22. M. G. Kuhn, �??Optical Time-Domain Eavesdropping Risks of CRT Displays,�?? in 2002 IEEE Symposium on Security and Privacy (IEEE Computer Society, Los Alamitos, California, 2002), pp. 3-18, <a href= " http://computer.org/proceedings/sp/1543/1543toc.htm">http://computer.org/proceedings/sp/1543/1543toc.htm</a>
  23. H. Yamamoto, Y. Hayasaki, and N. Nishida, �??Securing information display by use of visual cryptography,�?? Opt. Lett. 28, 1564-1566 (2003).
  24. M. Naor and A. Shamir, �??Visual Cryptography,�?? in Advances in Cryptography - EUROCRYPT�??94, Vol 950 of Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1994), pp. 1-12.
    [CrossRef] [PubMed]
  25. J. Tanida and Y. Ichioka, �??Optical logic array processor using shadowgrams,�?? J. Opt. Soc. Am. 73, 800-809 (1983).
  26. S. Droste, �??New Results on Visual Cryptography,�?? in Advances in Cryptography - EUROCRYPT '96, Vol. 1109 of Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1996), pp. 401-415.
    [CrossRef]
  27. C. Blundo, A. De Santis, and M. Naor, �??Visual cryptography for grey level images�??, Information Processing Letters 75, 255-259 (2000).
  28. H. Koga, M. Iwamoto, and H. Yamamoto, �??An analytic construction of the visual secret sharing scheme for color images,�?? IEICE Trans. Fundamentals. E84-A, 262-272 (2001).
    [CrossRef]
  29. R. Hwang and C. Chang, �??Hiding a picture in two pictures,�?? Opt. Eng. 40, 342-351 (2001).
  30. C.-C. Wang, S.-C. Tai, and C.-S. Yu, �??Repeating image watermarking technique by the visual cryptography,�?? IEICE Trans. Fundamentals. E83-A, 1589-1598 (2000), <a href= " http://search.ieice.org/2000/files/e000a08.htm#e83-a,8,1589">http://search.ieice.org/2000/files/e000a08.htm#e83-a,8,1589</a>
    [CrossRef]

2002 IEEE Symp. on Security and Privacy

M. G. Kuhn, �??Optical Time-Domain Eavesdropping Risks of CRT Displays,�?? in 2002 IEEE Symposium on Security and Privacy (IEEE Computer Society, Los Alamitos, California, 2002), pp. 3-18, <a href= " http://computer.org/proceedings/sp/1543/1543toc.htm">http://computer.org/proceedings/sp/1543/1543toc.htm</a>

Appl. Opt.

IEEE Trans Photonics Tech. Lett.

S. Fukushima, T. Kurokawa, and Y. Sakai, �??Image Encipherment Based on Optical Parallel Processing Using Spatial Light Modulators,�?? IEEE Trans. Photonics Tech. Lett. 3, 1133-1135 (1991).
[CrossRef]

IEICE Trans. Commun.

K. Aizawa and K. Kakami, �??Ubiquitous display controlled by mobile terminals,�?? IEICE Trans. Commun. E85-B, 2214-2217 (2002), <a href= " http://search.ieice.org/2002/files/e000b10.htm#e85-b,10,2214" >http://search.ieice.org/2002/files/e000b10.htm#e85-b,10,2214</a>

IEICE Trans. Fundamentals

H. Koga, M. Iwamoto, and H. Yamamoto, �??An analytic construction of the visual secret sharing scheme for color images,�?? IEICE Trans. Fundamentals. E84-A, 262-272 (2001).
[CrossRef]

C.-C. Wang, S.-C. Tai, and C.-S. Yu, �??Repeating image watermarking technique by the visual cryptography,�?? IEICE Trans. Fundamentals. E83-A, 1589-1598 (2000), <a href= " http://search.ieice.org/2000/files/e000a08.htm#e83-a,8,1589">http://search.ieice.org/2000/files/e000a08.htm#e83-a,8,1589</a>
[CrossRef]

Information Processing Letters

C. Blundo, A. De Santis, and M. Naor, �??Visual cryptography for grey level images�??, Information Processing Letters 75, 255-259 (2000).

J. Opt. Soc. Am.

Lecture Notes in Computer Science

S. Droste, �??New Results on Visual Cryptography,�?? in Advances in Cryptography - EUROCRYPT '96, Vol. 1109 of Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1996), pp. 401-415.
[CrossRef]

M. Naor and A. Shamir, �??Visual Cryptography,�?? in Advances in Cryptography - EUROCRYPT�??94, Vol 950 of Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1994), pp. 1-12.
[CrossRef] [PubMed]

Opt. Commun.

Z. Zalevsky, D. Mendlovic, U. Levy, and G. Shabtay, �??A new optical random coding technique for security systems,�?? Opt. Commun. 180, 15-20 (2000).
[CrossRef]

G. Unnikrishnan, M. Pohit, and K. Singh, �??A polarization encoded optical encryption system using ferroelectric spatial light modulator,�?? Opt. Commun. 185, 25-31 (2000).
[CrossRef]

S. Lai and M. A. Neifeld, �??Digital wavefront reconstruction and its application to image encryption,�?? Opt. Commun. 178, 283-289 (2000).
[CrossRef]

L. Yu, X. Peng, and L. Cai, �??Parameterized multi-dimensional data encryption by digital optics,�?? Opt. Commun. 203, 67-77 (2002).
[CrossRef]

Opt. Eng.

R. K. Wang, I. A. Watson, and C. Chatwin, �??Random phase encoding for optical security,�?? Opt. Eng. 35, 2464-2469 (1996).
[CrossRef]

B. Javidi and J. L. Horner, �??Optical pattern recognition for validation and security verification,�?? Opt. Eng. 33, 1752-1756 (1994).
[CrossRef]

R. Hwang and C. Chang, �??Hiding a picture in two pictures,�?? Opt. Eng. 40, 342-351 (2001).

Opt. Express

Opt. Lett

P. C. Mogensen and J. Glückstad, �??Phase-only optical encryption,�?? Opt. Lett. 25, 566-568 (2000).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of secure information display by use of visual cryptography.

Fig. 2.
Fig. 2.

Limitation of the viewing zone by use of a decoding mask.

Fig. 3.
Fig. 3.

Code set for encryption of eight-color images. The subpixel patterns of the displayed image are determined by the mask pattern and the pixel color. The white subpixels in the decoding mask pattern are transparent. R, G, B, C, M, Y, K, and W denote red, green, blue, cyan, magenta, yellow, black, and white, respectively, in the decoded image.

Fig. 4.
Fig. 4.

Examples of encryption for multi-color images. (a) A decoding mask, (b) a displayed image, (c) the decoded image, and (d) an unsuccessfully decoded image obtained by mis-overlaying of the decoding mask. Images (e) and (f) are another displayed image and the decoded image by overlaying the same decoding mask in (a).

Fig. 5.
Fig. 5.

Viewed images at the viewing position showing (a) red, green, and blue, (b) cyan, magenta, and yellow, (c) black, and (d) white.

Fig. 6.
Fig. 6.

Viewed images at different viewing points: (a) viewed image from the left side; (b) viewed image from relatively close to the ideal viewing position; (c) viewed image from the right side; (d) viewed image at close range; and (e) viewed image at long range.

Tables (5)

Tables Icon

Table 1. Assignment of subpixel values for multiple colors

Tables Icon

Table 2. Permutations of the red, green, and blue subpixels

Tables Icon

Table 3. Frequencies of obtained pixels values in combinations of each decoding mask pattern with the displayed image patterns. There are 120 different combinations for each mask pattern.

Tables Icon

Table 4. Frequencies of obtained pixel values in combinations of the displayed pattern for case number w with the decoding mask patterns. There are 20 different combinations for each displayed image pattern.

Tables Icon

Table 5. Extracted code set to encrypt multi-color images, where w denotes the case number.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D = ( d 11 d 12 d 13 d 21 d 22 d 23 ) , where { d 11 , d 12 , d 13 , d 21 , d 22 , d 23 } = { 0 , 0 , 0 , 1 , 2 , 4 } .
M = ( m 11 m 12 m 13 m 21 m 22 m 23 ) , where { m 11 , m 12 , m 13 , m 21 , m 22 , m 23 } = { 0 , 0 , 0 , 1 , 1 , 1 } .
M T D = i = 1 2 ( m i 1 d i 1 m i 1 d i 2 m i 1 d i 3 m i 2 d i 1 m i 2 d i 2 m i 2 d i 3 m i 3 d i 1 m i 3 d i 2 m i 3 d i 3 ) ,
M D T = j = 1 3 ( m 1 j d 1 j m 1 j d 2 j m 2 j d 1 j m 2 j d 2 j ) .
P 0 = Tr ( M T D ) = Tr ( M D T ) = i = 1 2 j = 1 3 d ij m ij ,

Metrics