Abstract

Because of the presence of atmospheric refractive turbulence, it is necessary to use simulations of beam propagation to examine the uncertainty added to the differential absorption lidar (DIAL) measurement process of a practical heterodyne lidar. The outcomes of our analysis illustrate the relative sensitivity of coherent DIAL systems under general atmospheric conditions and different instrument configurations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. J. Rye, �??Antenna parameters for incoherent backscatter heterodyne lidar,�?? Appl. Opt. 18, 1390-1398 (1979).
    [CrossRef] [PubMed]
  2. R. G. Frehlich and M. J. Kavaya, �??Coherent laser radar performance for general atmospheric refractive turbulence,�?? Appl. Opt. 30, 5325-5352 (1991).
    [CrossRef] [PubMed]
  3. A. Belmonte and B. J. Rye, �??Heterodyne lidar returns in turbulent atmosphere: performance evaluation of simulated systems,�?? Appl. Opt. 39, 2401-2411 (2000).
    [CrossRef]
  4. B. J. Rye, �??Refractive-turbulent contribution to incoherent backscatter heterodyne lidar returns,�?? J. Opt. Soc. Am. 71, 687-691 (1981).
    [CrossRef]
  5. G. Guérit, P. Drobinski, P. H. Flamant, and B. Augière, �??Analytical empirical expressions of the transverse coherence properties for monostatic and bistatic lidars in the presence of moderate atmospheric refractive-index turbulence,�?? Appl. Opt. 40, 4275-4285 (2001).
    [CrossRef]
  6. J. Martin, �??Simulation of wave propagation in random media: theory and applications,�?? in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, and V. Zavorotny, eds., SPIE, Washington (1993).
  7. A. Belmonte, �??Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,�?? Appl. Opt. 39, 5426-5445 (2000).
    [CrossRef]
  8. A. Belmonte, �??Analyzing the efficiency of a practical heterodyne lidar in the turbulent atmosphere: telescope parameters,�?? Opt. Express 11, 2041-2046 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2041">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2041</a>.
    [CrossRef] [PubMed]
  9. A. Belmonte, �??Angular misalignment contribution to practical heterodyne lidars in the turbulent atmosphere,�?? Opt. Express 11, 2525-2531 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2525">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2525</a>.
    [CrossRef] [PubMed]
  10. A. Belmonte, �??Coherent power measurement uncertainty resulting from atmospheric turbulence,�?? Opt. Express 12, 168-175 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-168">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-168</a>.
    [CrossRef] [PubMed]
  11. M. J. Kavaya, S. W. Henderson, E. C. Russell, R. M. Huffaker, and R. G. Frehlich, �??Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling,�?? Appl. Opt. 28, 840-851 (1989).
    [CrossRef] [PubMed]
  12. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy, �??Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,�?? Appl. Opt. 39, 3664-3669 (2000).
    [CrossRef]
  13. R. M. Hardesty, �??Coherent DIAL measurement of range-resolved water vapor concentration,�?? Appl. Opt. 23, 2545-2553 (1984).
    [CrossRef] [PubMed]
  14. Y. Zhao, �??Line-pair selections for remote sensing of atmospheric ammonia by use of a coherent CO2 differential absorption lidar system,�?? Appl. Opt. 39, 997-1007 (2000).
    [CrossRef]
  15. W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, and B. Rye, �??Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,�?? in 19th International Laser Radar Conference (NASA/CP-1998-207671/PT1 NASA, Washington, D.C., 1998), pp. 565-568.
  16. R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley-Interscience, New York, 1984).
  17. M. G. Kendall and A. Stuart, Advanced Theory of Statistics, 6th ed. (Edward Arnold, London, 1994).
  18. L. C. Andrews, �??An analytical model for the refractive-index power spectrum and its application to optical scintillation in the atmosphere,�?? J. Mod. Opt. 39, 1849-1853, 1992.
    [CrossRef]
  19. See papers presented at the DIAL session of the Twelfth Biennial Coherent Laser Radar Technology and Applications Conference, Bar Harbor, Me., June 15�??20, 2003.

19th International Laser Radar Conferenc (1)

W. A. Brewer, V. Wulfmeyer, R. M. Hardesty, and B. Rye, �??Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar,�?? in 19th International Laser Radar Conference (NASA/CP-1998-207671/PT1 NASA, Washington, D.C., 1998), pp. 565-568.

Appl. Opt. (9)

G. Guérit, P. Drobinski, P. H. Flamant, and B. Augière, �??Analytical empirical expressions of the transverse coherence properties for monostatic and bistatic lidars in the presence of moderate atmospheric refractive-index turbulence,�?? Appl. Opt. 40, 4275-4285 (2001).
[CrossRef]

M. J. Kavaya, S. W. Henderson, E. C. Russell, R. M. Huffaker, and R. G. Frehlich, �??Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling,�?? Appl. Opt. 28, 840-851 (1989).
[CrossRef] [PubMed]

G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy, �??Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,�?? Appl. Opt. 39, 3664-3669 (2000).
[CrossRef]

R. M. Hardesty, �??Coherent DIAL measurement of range-resolved water vapor concentration,�?? Appl. Opt. 23, 2545-2553 (1984).
[CrossRef] [PubMed]

Y. Zhao, �??Line-pair selections for remote sensing of atmospheric ammonia by use of a coherent CO2 differential absorption lidar system,�?? Appl. Opt. 39, 997-1007 (2000).
[CrossRef]

B. J. Rye, �??Antenna parameters for incoherent backscatter heterodyne lidar,�?? Appl. Opt. 18, 1390-1398 (1979).
[CrossRef] [PubMed]

R. G. Frehlich and M. J. Kavaya, �??Coherent laser radar performance for general atmospheric refractive turbulence,�?? Appl. Opt. 30, 5325-5352 (1991).
[CrossRef] [PubMed]

A. Belmonte and B. J. Rye, �??Heterodyne lidar returns in turbulent atmosphere: performance evaluation of simulated systems,�?? Appl. Opt. 39, 2401-2411 (2000).
[CrossRef]

A. Belmonte, �??Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,�?? Appl. Opt. 39, 5426-5445 (2000).
[CrossRef]

J. Mod. Opt. (1)

L. C. Andrews, �??An analytical model for the refractive-index power spectrum and its application to optical scintillation in the atmosphere,�?? J. Mod. Opt. 39, 1849-1853, 1992.
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (3)

Wave Propagation in Random Media 1993 (1)

J. Martin, �??Simulation of wave propagation in random media: theory and applications,�?? in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, and V. Zavorotny, eds., SPIE, Washington (1993).

Other (3)

R. M. Measures, Laser Remote Sensing. Fundamentals and Applications (Wiley-Interscience, New York, 1984).

M. G. Kendall and A. Stuart, Advanced Theory of Statistics, 6th ed. (Edward Arnold, London, 1994).

See papers presented at the DIAL session of the Twelfth Biennial Coherent Laser Radar Technology and Applications Conference, Bar Harbor, Me., June 15�??20, 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Coherent power equivalent variance in a DIAL system as a function of range R and different moderate-to-strong refractive turbulence Cn2 daytime values for a 2-µm wavelength, 16-cm aperture, monostatic lidar system. The power variances are shown for different range resolutions ΔR. The dashed curve and y-axis labeling on the right corresponds to the mean coherent power.

Fig. 2.
Fig. 2.

Turbulence-induced DIAL measurement uncertainty as a function of range R and different moderate-to-strong refractive turbulence Cn2 daytime values for a 2-µm wavelength, 16-cm aperture, monostatic lidar system. The standard deviations are shown for different DIAL range resolutions ΔR. Range-resolved DIAL measurement errors of CO2 (carbon dioxide) concentration (solid curves) are compared with those relative errors corresponding to measurements of H2O (water vapor) concentration (dashed curves) (see text for further details).

Fig. 3.
Fig. 3.

DIAL error resulting from atmospheric turbulence as a function of range R and typical daytime conditions of strong turbulence Cn2 for a 10-µm wavelength, 16-cm aperture, monostatic lidar system. The concentration relative errors are shown for different DIAL range resolutions ΔR. Range-resolved DIAL measurement errors of NH3 (ammonia) concentration (solid curves) are compared with those errors corresponding to measurements of H2O (water vapor) concentration (dashed curves).

Tables (1)

Tables Icon

Table 1. Wavelength selection of laser lines for range-resolved coherent DIAL measurements.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P ( R , t ) = C exp [ 2 R α ( R ) ] β ( R ) Ω COH ( R , t ) ,
ρ ( R , Δ R ) = 1 2 K Δ R ln [ δ P ( R , Δ R ) ] ,
δ P ( R , Δ R ) = P on ( R Δ R 2 ) P off ( R + Δ R 2 ) P on ( R + Δ R 2 ) P off ( R Δ R 2 ) .
σ ρ 2 ( R ) = 1 4 K 2 ρ ¯ 2 ( Δ R ) 2 σ δ P 2 ( R , Δ R ) ,
σ δ P 2 ( R , Δ R ) = σ P on 2 ( R Δ R 2 ) + σ P off 2 ( R Δ R 2 )
+ σ P on 2 ( R + Δ R 2 ) + σ P off 2 ( R + Δ R 2 ) O ( R ) .
O ( R ) = 2 C P on ( R Δ R 2 , R + Δ R 2 ) + 2 C P off ( R Δ R 2 , R + Δ R 2 ) + O 2 ( R ) .

Metrics