Abstract

We demonstrate 2.5 times phase conjugation by four-wave-mixing with the use of pico-second pulses in a rhodamine6G dye polymer amplifier. Phase conjugation pulse shortening by a factor of 2 is also measured.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. C. Stuart, Michael D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, �??Optical ablation by high-power short-pulse lasers,�?? J. Opt. Soc. Am. B 13, 459-468 (1996).
    [CrossRef]
  2. J. P. Heritage, A. M. Weiner, and J. R. N. Thurston, �??Pico-second pulse shaping by spectral phase and amplitude manipulation,�?? Opt. Lett. 10, 609-611 (1985).
    [CrossRef] [PubMed]
  3. A. Tomita, �??Phase conjugation using gain saturation of a Nd:YAG laser,�?? Appl. Phys. Lett. 34, 463-464 (1979).
    [CrossRef]
  4. G. J. Crofts, R. P. Green, M. J. Damzen, �??Investigation of multi pass geometries for efficient degenerate four-wave mixing in Nd:YAG,�?? Opt. Lett. 17, 920-922 (1992).
    [CrossRef] [PubMed]
  5. A. Brignon, G. Feugnet, J.-P. Huignard, J.-P. Pocholle, �??Efficient degenerated four-wave mixing in a diode-pumped Nd:YVO4 saturable amplifier,�?? Opt. Lett. 20,548-550 (1995).
    [CrossRef] [PubMed]
  6. A. Brignon, G. Feugnet, J.-P. Huignard, J.-P. Pocholle, �??Multi pass degenerate four-wave mixing in a diode-pumped Nd:YVO4 saturable amplifier,�?? J. Opt. Soc. Am. B 12, 1316-1325 (1995).
    [CrossRef]
  7. T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, �??150-times phase conjugation by degenerate four-wave mixing in a continuous-wave Nd:YVO4 amplifier,�?? Appl. Phys. B 75, 493-495 (2002).
    [CrossRef]
  8. G. J. Crofts, X, Banti, M. J. Damzen, �??Tunable phase conjgation in a Ti:sapphire amplifier,�?? Opt. Lett. 20, 1634 -1636 (1995).
    [CrossRef] [PubMed]
  9. J. C. Diel, I. C. McMichael, H. V. Vanherzeele, �??Degenetrate Four-Wave Mixing of Picosecond Pulses in the Saturable Amplification of a Dye Laser,�?? IEEE J. Quantum. Electron.QE-20, 630-636 (1984).
    [CrossRef]
  10. T. Omatsu, N. Hayashi, H. Watanabe, A. Hasegawa, M. Tateda, �??Tunable visible phase conjugator with a saturable-amplifier laser-dye,�?? Opt. Lett. 23, 1432-1434 (1998).
    [CrossRef]
  11. H. Watanabe, T. Omatsu, T. Hirose, A. Hasegawa, M. Tateda, �??Highly efficient degenerate four-wave mixing with multi pass geometries in a polymer laser dye saturable amplifier,�?? Opt. Lett. 24,1620-1622 (1999).
    [CrossRef]
  12. L.M. Franz, J.S.Nodvik, �??Theory of Pulse Propagation in a Laser Amplifier,�?? J. Appl. Phys. 34, 2346-2349 (1963).
    [CrossRef]
  13. T. Yonekawa, T. Omatsu, T. Hirose, Y. Ueda, H. Watanabe, M. Tateda, �??Self-diffraction of pico-second pulses in a saturable amplifier polymer dye,�?? Opt. Commun. 206, 165-170 (2002).
    [CrossRef]
  14. A. Brignon, �??Temporal analysis of pulsed phase conjugation in laser amplifiers: application to Nd:YVO4,�?? J. Opt. Soc. Am. B 13, 1748-1757 (1996).
    [CrossRef]

Appl. Phys. B (1)

T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, �??150-times phase conjugation by degenerate four-wave mixing in a continuous-wave Nd:YVO4 amplifier,�?? Appl. Phys. B 75, 493-495 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

A. Tomita, �??Phase conjugation using gain saturation of a Nd:YAG laser,�?? Appl. Phys. Lett. 34, 463-464 (1979).
[CrossRef]

IEEE J. Quantum. Electron. (1)

J. C. Diel, I. C. McMichael, H. V. Vanherzeele, �??Degenetrate Four-Wave Mixing of Picosecond Pulses in the Saturable Amplification of a Dye Laser,�?? IEEE J. Quantum. Electron.QE-20, 630-636 (1984).
[CrossRef]

J. Appl. Phys. (1)

L.M. Franz, J.S.Nodvik, �??Theory of Pulse Propagation in a Laser Amplifier,�?? J. Appl. Phys. 34, 2346-2349 (1963).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

T. Yonekawa, T. Omatsu, T. Hirose, Y. Ueda, H. Watanabe, M. Tateda, �??Self-diffraction of pico-second pulses in a saturable amplifier polymer dye,�?? Opt. Commun. 206, 165-170 (2002).
[CrossRef]

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of four-wave mixing

Fig. 2.
Fig. 2.

Experimental gain as a function of probe fluence. Open circles and solid line show gain at external-gain pump fluence of 20mJ/cm2, and closed circles and dashed line show at external-gain pump fluence of 10mJ/cm2.

Fig. 3.
Fig. 3.

Experimental plots of phase conjugation reflectivity as a function of forward pump fluence. Open and closed circles represent the experimental points at two different pump levels of 20mJ/cm2 and 10mJ/cm2, respectively. Solid and broken lines show theoretical fits.

Fig. 4.
Fig. 4.

Far-field patterns of (a) the probe beam, (b) the probe beam reflected by conventional mirror, and (c) the phase conjugation of the probe beam.

Fig. 5.
Fig. 5.

Temporal evolution of phase conjugation.

Fig. 6.
Fig. 6.

Numerically simulated model for DFWM. The active region is partitioned into the one-grating (transmission) and two-grating (transmission and reflection) regions.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d A 1 dz = γ 0 A 1 ( γ t A 2 + T ( z ) γ r A 3 )
d A 2 dz = γ 0 A 2 ( γ t A 2 + T ( z ) γ r A 3 )
d A 3 dz = γ 0 A 3 ( γ t A 4 + T ( z ) γ r A 1 )
d A 4 dz = γ 0 A 4 ( γ t A 3 + T ( z ) γ r A 2 )
T ( z ) = { 0 0 < z < ( 1 r ) L 1 ( 1 r ) L < z < L
γ 0 = g 0 2 exp ( U 0 ) I 0 ( U Mt ) I 0 ( U Mr )
γ t = g 0 2 exp ( U 0 ) I 1 ( U Mt ) I 0 ( U Mr )
γ r = g 0 2 exp ( U 0 ) I 0 ( U Mt ) I 1 ( U Mr )
U 0 = A 1 2 + A 2 2 + A 3 2 + A 4 2 U S d t
U Mt = 2 A 1 A 2 + A 3 A 4 U S d t
U Mr = 2 A 1 A 3 + A 2 A 4 U S d t

Metrics