Abstract

A liquid crystal blazed grating having a prismatic polymer microstructure has been developed. The polymer structure is fabricated by photo-induced localization and polymerization of a small concentration of monomer onto one substrate of an electro-optical cell by using ultraviolet light irradiation at 45° direction from normal incident. Using this method a periodical one-dimensional pattern with a prismatic shape of polymer can be formed on a one-dimensional pattern-forming state of a cholesteric host. The optical diffraction properties of the grating are evaluated by the application of electric field and light incident angles.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization

Wen-Song Li, Ling-Ling Ma, Ling-Li Gong, Sen-Sen Li, Can Yang, Bin Luo, Wei Hu, and Lu-Jian Chen
Opt. Mater. Express 6(1) 19-28 (2016)

Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring

Igor Gvozdovskyy, Oleg Yaroshchuk, Marina Serbina, and Rumiko Yamaguchi
Opt. Express 20(4) 3499-3508 (2012)

Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal

Pankaj Kumar, Shin-Woong Kang, and Seung Hee Lee
Opt. Mater. Express 2(8) 1121-1134 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Kashnow and J. E. Bigelow, “Diffraction from a liquid crystal phase grating,” Appl. Opt. 12, 2302–2304 (1973).
    [Crossref] [PubMed]
  2. K. Hirabayashi and T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14, 307–317 (1993).
    [Crossref]
  3. P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, “Applications look at the use of liquid crystal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
    [Crossref]
  4. S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid crystal microlens with a beam-steering function,” Appl. Optics,  36, 4772–4778 (1997).
    [Crossref]
  5. C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
    [Crossref]
  6. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004).
    [Crossref] [PubMed]
  7. X. Wang, D. Wilson, R. Mulller, P. Maker, and D. Psaltis, “Liquid-crystal blazed grating beam deflector,” Appl. Opt. 39, 6545 (2000).
    [Crossref]
  8. S. N. Lee, S. Sprunt, and L. C. Chien, “Morphology-dependent Switching of Polymer-Stabilized Cholesteric Gratings,” Liq. Cryst. 28, 637 (2001).
    [Crossref]
  9. S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced Localization of Orientationally Ordered Polymer Networks at the Surface of a Liquid Crystal Host,” Macromolecules 35, 9372 (2002).
    [Crossref]

2004 (1)

2002 (2)

C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
[Crossref]

S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced Localization of Orientationally Ordered Polymer Networks at the Surface of a Liquid Crystal Host,” Macromolecules 35, 9372 (2002).
[Crossref]

2001 (1)

S. N. Lee, S. Sprunt, and L. C. Chien, “Morphology-dependent Switching of Polymer-Stabilized Cholesteric Gratings,” Liq. Cryst. 28, 637 (2001).
[Crossref]

2000 (1)

1997 (1)

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid crystal microlens with a beam-steering function,” Appl. Optics,  36, 4772–4778 (1997).
[Crossref]

1993 (2)

K. Hirabayashi and T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14, 307–317 (1993).
[Crossref]

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, “Applications look at the use of liquid crystal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

1973 (1)

Apter, B.

Bahat-Treidel, E.

Barnes, L. J.

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, “Applications look at the use of liquid crystal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

Bigelow, J. E.

Brown, C. V.

C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
[Crossref]

Chien, L. C.

S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced Localization of Orientationally Ordered Polymer Networks at the Surface of a Liquid Crystal Host,” Macromolecules 35, 9372 (2002).
[Crossref]

S. N. Lee, S. Sprunt, and L. C. Chien, “Morphology-dependent Switching of Polymer-Stabilized Cholesteric Gratings,” Liq. Cryst. 28, 637 (2001).
[Crossref]

Dorschner, T. A.

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, “Applications look at the use of liquid crystal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

Efron, U.

Elston, S. J.

C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
[Crossref]

Hirabayashi, K.

K. Hirabayashi and T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14, 307–317 (1993).
[Crossref]

Ito, H.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid crystal microlens with a beam-steering function,” Appl. Optics,  36, 4772–4778 (1997).
[Crossref]

Kang, S. W.

S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced Localization of Orientationally Ordered Polymer Networks at the Surface of a Liquid Crystal Host,” Macromolecules 35, 9372 (2002).
[Crossref]

Kashnow, R. A.

Kriezis, Em. E.

C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
[Crossref]

Kurokawa, T.

K. Hirabayashi and T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14, 307–317 (1993).
[Crossref]

Lee, S. N.

S. N. Lee, S. Sprunt, and L. C. Chien, “Morphology-dependent Switching of Polymer-Stabilized Cholesteric Gratings,” Liq. Cryst. 28, 637 (2001).
[Crossref]

Maker, P.

Masuda, S.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid crystal microlens with a beam-steering function,” Appl. Optics,  36, 4772–4778 (1997).
[Crossref]

McManamon, P. F.

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, “Applications look at the use of liquid crystal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

Mulller, R.

Nose, T.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid crystal microlens with a beam-steering function,” Appl. Optics,  36, 4772–4778 (1997).
[Crossref]

Psaltis, D.

Sato, S.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid crystal microlens with a beam-steering function,” Appl. Optics,  36, 4772–4778 (1997).
[Crossref]

Sprunt, S.

S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced Localization of Orientationally Ordered Polymer Networks at the Surface of a Liquid Crystal Host,” Macromolecules 35, 9372 (2002).
[Crossref]

S. N. Lee, S. Sprunt, and L. C. Chien, “Morphology-dependent Switching of Polymer-Stabilized Cholesteric Gratings,” Liq. Cryst. 28, 637 (2001).
[Crossref]

Takahashi, S.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid crystal microlens with a beam-steering function,” Appl. Optics,  36, 4772–4778 (1997).
[Crossref]

Wang, X.

Watson, E. A.

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, “Applications look at the use of liquid crystal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

Wilson, D.

Appl. Opt. (3)

Appl. Optics (1)

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid crystal microlens with a beam-steering function,” Appl. Optics,  36, 4772–4778 (1997).
[Crossref]

J. Appl. Phys. (1)

C. V. Brown, Em. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91, 3495–3500 (2002).
[Crossref]

Liq. Cryst. (2)

K. Hirabayashi and T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14, 307–317 (1993).
[Crossref]

S. N. Lee, S. Sprunt, and L. C. Chien, “Morphology-dependent Switching of Polymer-Stabilized Cholesteric Gratings,” Liq. Cryst. 28, 637 (2001).
[Crossref]

Macromolecules (1)

S. W. Kang, S. Sprunt, and L. C. Chien, “Photoinduced Localization of Orientationally Ordered Polymer Networks at the Surface of a Liquid Crystal Host,” Macromolecules 35, 9372 (2002).
[Crossref]

Opt. Eng. (1)

P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, “Applications look at the use of liquid crystal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) The picture depicts the helix rotation with respect to the surface rubbing directions of alignment layers and the formation of one-dimensional pattern from a cholesteric liquid crystal. Black arrows display rubbing direction and Blue lines on the top substrate represent the stripe direction after director reorientation by the applied field. (b) The schematic illustration of the UV polymerization apparatus with a 45-degree slantwise irradiation and the formation polymer grating after UV-induced polymerization.

Fig. 2.
Fig. 2.

(a) The POM image of the sample formed with UV irradiation at a 45-degree incident angle from normal reveals one-dimensional polymer stripes after the removal of liquid crystal. A gradient of dark and bright pattern is observed. The stripes follow the rubbing direction (the black arrows represent the rubbing directions of the top and bottom alignment layers) and the grating period is 10µm. (b) The SEM image corroborates the prismatic grating polymer microstructure.

Fig. 3.
Fig. 3.

Optical diffraction patterns of the blazed-grating sample under different magnitude of applied field.

Fig. 4.
Fig. 4.

The beam deflection angle of the -1st order as a function of incident angle for the 45-degree blazed grating sample. The maximum difference of diffraction angles from the ±53° incident directions of the He-Ne laser beam is 32.8%.

Metrics