Abstract

A variable optical attenuator (VOA) based on polymer stabilized twisted nematic (PSTN) liquid crystal (LC) is demonstrated. Comparing with the normal twisted nematic LC-based VOA, PSTN exhibits a much faster response time. Moreover, the polymer networks effectively eliminate the backflow effect which exists in the normal TNLC cell. The attenuation mechanism of the PSTN LC was studied. Both polarization rotation and light scattering effects are found to contribute to the optical attenuation. The ratio between these two mechanisms can be adjusted by changing the polymer concentration and polymer network domain size.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Efron, S. T. Wu, and T. D. Bates, “Nematic liquid crystals for spatial light modulators: recent studies,” J. Opt. Soc. Am. B 3, 247–252 (1986).
    [CrossRef]
  2. R. Ozaki, T. Matsui, M. Ozaki, K. Yoshino, and K, “Electrically color-tunable defect mode lasing in onedimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
    [CrossRef]
  3. S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Clark, G. D. Love, A. F. Naumov, C. D. Saunter, M. Yu. Loktev, G. V. Vdovin, and L. V. Toporkova, “Modal liquid crystal wavefront corrector,” Opt. Express 10, 1258–1272 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258
    [CrossRef] [PubMed]
  4. J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), pp. 943–949.
  5. C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical tecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chen, ed., Proc. SPIE 5003121–129 (2003).
  6. I. C. Khoo and S. T. Wu, Optics and Nonlinear Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), Chap. 2.
    [CrossRef]
  7. J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 341469–1471 (2003).
  8. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001), Chap. 10.
  9. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
    [CrossRef]
  10. C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤90°,” J. Phys. D. 8, 1575–1584 (1975).
    [CrossRef]
  11. N. J. Smith, M. D. Tillin, and J. R. Sambles, “Direct optical qualification of backflow in a 90?twisted nematic cell,” Phys. Rev. Lett. 88, 088301 (2002).
    [CrossRef] [PubMed]
  12. C. Z. Van Doorn, “Dynamic behavior of twisted nematic liquid-crystal layers in switched fields,” J. Appl. Phys. 46, 3738–3745 (1975).
    [CrossRef]
  13. R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
    [CrossRef]
  14. F. Du, S. Gauza, and S. T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11, 2891–2896 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2891
    [CrossRef] [PubMed]
  15. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
    [CrossRef]

2004 (1)

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

2003 (5)

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical tecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chen, ed., Proc. SPIE 5003121–129 (2003).

J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 341469–1471 (2003).

R. Ozaki, T. Matsui, M. Ozaki, K. Yoshino, and K, “Electrically color-tunable defect mode lasing in onedimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

F. Du, S. Gauza, and S. T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11, 2891–2896 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2891
[CrossRef] [PubMed]

2002 (2)

1990 (1)

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

1986 (1)

1975 (2)

C. Z. Van Doorn, “Dynamic behavior of twisted nematic liquid-crystal layers in switched fields,” J. Appl. Phys. 46, 3738–3745 (1975).
[CrossRef]

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤90°,” J. Phys. D. 8, 1575–1584 (1975).
[CrossRef]

Bates, T. D.

Clark, P.

Dabrowski, R.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Du, F.

Efron, U.

Fan, Y. H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

Feng, W.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical tecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chen, ed., Proc. SPIE 5003121–129 (2003).

Gauza, S.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

F. Du, S. Gauza, and S. T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11, 2891–2896 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2891
[CrossRef] [PubMed]

Glushchenko, A.

J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 341469–1471 (2003).

Gooch, C. H.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤90°,” J. Phys. D. 8, 1575–1584 (1975).
[CrossRef]

Guralnik, I. R.

Hikmet, R. A. M.

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

Huang, T.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical tecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chen, ed., Proc. SPIE 5003121–129 (2003).

Jiang, J.

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), pp. 943–949.

K,

R. Ozaki, T. Matsui, M. Ozaki, K. Yoshino, and K, “Electrically color-tunable defect mode lasing in onedimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

Khoo, I. C.

I. C. Khoo and S. T. Wu, Optics and Nonlinear Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), Chap. 2.
[CrossRef]

Klimov, N. A.

Kotova, S. P.

Kvashnin, M. Yu.

Lin, Y. H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

Loktev, M. Yu.

Love, G. D.

Mao, C.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical tecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chen, ed., Proc. SPIE 5003121–129 (2003).

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, K. Yoshino, and K, “Electrically color-tunable defect mode lasing in onedimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

Naumov, A. F.

Ozaki, M.

R. Ozaki, T. Matsui, M. Ozaki, K. Yoshino, and K, “Electrically color-tunable defect mode lasing in onedimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, K. Yoshino, and K, “Electrically color-tunable defect mode lasing in onedimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

Pan, J. J.

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), pp. 943–949.

Qiu, X.

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), pp. 943–949.

Rakhmatulin, M. A.

Ren, H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

Sambles, J. R.

N. J. Smith, M. D. Tillin, and J. R. Sambles, “Direct optical qualification of backflow in a 90?twisted nematic cell,” Phys. Rev. Lett. 88, 088301 (2002).
[CrossRef] [PubMed]

Saunter, C. D.

Seed, A.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Smith, N. J.

N. J. Smith, M. D. Tillin, and J. R. Sambles, “Direct optical qualification of backflow in a 90?twisted nematic cell,” Phys. Rev. Lett. 88, 088301 (2002).
[CrossRef] [PubMed]

Tarry, H. A.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤90°,” J. Phys. D. 8, 1575–1584 (1975).
[CrossRef]

Tillin, M. D.

N. J. Smith, M. D. Tillin, and J. R. Sambles, “Direct optical qualification of backflow in a 90?twisted nematic cell,” Phys. Rev. Lett. 88, 088301 (2002).
[CrossRef] [PubMed]

Toporkova, L. V.

Van Doorn, C. Z.

C. Z. Van Doorn, “Dynamic behavior of twisted nematic liquid-crystal layers in switched fields,” J. Appl. Phys. 46, 3738–3745 (1975).
[CrossRef]

Vdovin, G. V.

Wang, H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Wang, W.

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), pp. 943–949.

Wen, C. H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

West, J. L.

J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 341469–1471 (2003).

Wu, H.

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), pp. 943–949.

Wu, J.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical tecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chen, ed., Proc. SPIE 5003121–129 (2003).

Wu, K.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical tecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chen, ed., Proc. SPIE 5003121–129 (2003).

Wu, S. T.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

F. Du, S. Gauza, and S. T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11, 2891–2896 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2891
[CrossRef] [PubMed]

U. Efron, S. T. Wu, and T. D. Bates, “Nematic liquid crystals for spatial light modulators: recent studies,” J. Opt. Soc. Am. B 3, 247–252 (1986).
[CrossRef]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001), Chap. 10.

I. C. Khoo and S. T. Wu, Optics and Nonlinear Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), Chap. 2.
[CrossRef]

Xu, M.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical tecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chen, ed., Proc. SPIE 5003121–129 (2003).

Yang, D. K.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001), Chap. 10.

Yoshino, K.

R. Ozaki, T. Matsui, M. Ozaki, K. Yoshino, and K, “Electrically color-tunable defect mode lasing in onedimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

Zayakin, O. A.

Zhang, G.

J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 341469–1471 (2003).

Appl. Phys. Lett. (2)

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, K. Yoshino, and K, “Electrically color-tunable defect mode lasing in onedimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

in Liquid Crystal Materials, Devices, and Applications IX (1)

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical tecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chen, ed., Proc. SPIE 5003121–129 (2003).

J. Appl. Phys. (2)

C. Z. Van Doorn, “Dynamic behavior of twisted nematic liquid-crystal layers in switched fields,” J. Appl. Phys. 46, 3738–3745 (1975).
[CrossRef]

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D. (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twisted angles ≤90°,” J. Phys. D. 8, 1575–1584 (1975).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (1)

N. J. Smith, M. D. Tillin, and J. R. Sambles, “Direct optical qualification of backflow in a 90?twisted nematic cell,” Phys. Rev. Lett. 88, 088301 (2002).
[CrossRef] [PubMed]

Soc. Information Display, Tech. Digest (1)

J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 341469–1471 (2003).

Other (3)

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001), Chap. 10.

I. C. Khoo and S. T. Wu, Optics and Nonlinear Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993), Chap. 2.
[CrossRef]

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), pp. 943–949.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A TN LC based variable optical attenuator modeled by Zemax optical simulation software.

Fig. 2.
Fig. 2.

Voltage-dependent transmittance of a TN LC based VOA. λ=1.55 µm.

Fig. 3.
Fig. 3.

Time dependent transmittance showing the VOA’s dynamic response under difference driving voltage. The solid black curve, dashed red curve and dash-dot blue curve correspond to 2.5 V, 10 V and 25 V, respectively.

Fig. 4.
Fig. 4.

Voltage dependent transmittance of a PSTN LC-based VOA.

Fig. 5.
Fig. 5.

Time dependent transmittance of a PSTNLC based VOA under difference driving voltages. The solid black curve and the dashed blue curve correspond to 20 V and 25 V, respectively.

Fig. 6.
Fig. 6.

The measured light scattering of a PSTN LC cell as a function of the applied voltage.

Tables (1)

Tables Icon

Table 1. Comparison of optical response times at different driving voltages.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ τ off = γ 1 d 2 K 22 π 2 τ on = τ off ( V V th ) 2 1

Metrics