Abstract

A broadband spectral comb is generated around the third harmonics of incident light with the nondegenerate, impulsively stimulated Raman scattering technique using ultrashort light pulses. The comb has a spectral width of more than 4000 cm-1, and its envelope becomes smooth as the light powers are increased. It consists of discrete lines, the spacing of which is equal to the frequency of the Raman-active phonon mode, even though the frequency of the phonon mode is far smaller than the frequency difference between the two incident light pulses. The multiline structure is generated with multiwave mixing by exchange of the impulsively stimulated phonon among the signals.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  3. Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, �??Generation of coherent soft X rays at 2.7 nm using high harmonics,�?? Phys. Rev. Lett. 79, 2967-2970 (1997).
    [CrossRef]
  4. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, �??Raman generation by phased and antiphased molecular states,�?? Phys. Rev. Lett. 85, 562-565 (2000).
    [CrossRef] [PubMed]
  5. S. Yoshikawa and T. Imasaka, �??A new approach for the generation of ultrashort optical pulses,�?? Opt. Commun. 96, 94-98 (1993).
    [CrossRef]
  6. S. E. Harris and A.V. Sokolov, �??Subfemtosecond pulse generation by molecular modulation,�?? Phys. Rev. Lett. 81, 2894-2897 (1998).
    [CrossRef]
  7. M. Wittmann, A. Nazarkin, and G. Korn, �??fs-pulse synthesis using phase modulation by impulsively excited molecular vibrations,�?? Phys. Rev. Lett. 84, 5508-5511 (2000).
    [CrossRef] [PubMed]
  8. N. A. Papadogiannis, B. Witzel, C. Kalpouzos, and D. Charalambidis, �??Observation of attosecond light localization in higher order harmonic generation,�?? Phys. Rev. Lett. 83, 4289-4292 (1999).
    [CrossRef]
  9. D. Meshulach and Y. Silberberg, �??Coherent quantum control of two-photon transitions by a femtosecond laser pulse,�?? Nature 396, 239-242 (1998).
    [CrossRef]
  10. W. S. Warren, H. Rabitz, and M. Dahleh, �??Coherent control of chemical reactions: the dream is alive,�?? Science 259, 1581-1589 (1993).
    [CrossRef] [PubMed]
  11. S. A. Rice, �??Molecular dynamics: optical control of reactions,�?? Nature 403, 496-497 (2000).
    [CrossRef] [PubMed]
  12. Th. Udem, R. Holzwarth, and T. W. Hänsch, �??Optical frequency metrology,�?? Nature 416, 233-237 (2002).
    [CrossRef] [PubMed]
  13. J.-I.Takahashi, E. Matsubara, T. Arima, and E. Hanamura, �??Coherent multistep anti-Stokes and stimulated Raman scattering associated with third harmonics in YFeO3 crystals,�?? Phys. Rev. B 68, 155102 (2003).
    [CrossRef]
  14. S. Venugopalan, M. Dutta, A. K. Ramdas, and J. P. Remeika, �??Magnetic and vibrational excitations in rareearth orthoferrites: a Raman scattering study,�?? Phys. Rev. B 31, 1490-1497 (1985).
    [CrossRef]
  15. S. De Silvestri, J.G. Fujimoto, E. P. Ippen, E. B. Gamble, Jr., L. R. Williams, and K. A. Nelson, �??Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated Raman scattering in á-perylene crystal from 20-300 K,�?? Chem. Phys. Lett. 116, 146-152 (1985).
    [CrossRef]
  16. H. J. Zeiger, J. Vidal, T. K. Cheng, E. P. Ippen, G. Dresselhaus, and M. S. Dresselhaus, �??Theory for displacive excitation of coherent phonons,�?? Phys. Rev. B 45, 768-778 (1992).
    [CrossRef]
  17. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, Hoboken, N. J., 2003), p. 163.

Chem. Phys. Lett.

S. De Silvestri, J.G. Fujimoto, E. P. Ippen, E. B. Gamble, Jr., L. R. Williams, and K. A. Nelson, �??Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated Raman scattering in á-perylene crystal from 20-300 K,�?? Chem. Phys. Lett. 116, 146-152 (1985).
[CrossRef]

Nature

S. A. Rice, �??Molecular dynamics: optical control of reactions,�?? Nature 403, 496-497 (2000).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, �??Optical frequency metrology,�?? Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

D. Meshulach and Y. Silberberg, �??Coherent quantum control of two-photon transitions by a femtosecond laser pulse,�?? Nature 396, 239-242 (1998).
[CrossRef]

Opt. Commun.

S. Yoshikawa and T. Imasaka, �??A new approach for the generation of ultrashort optical pulses,�?? Opt. Commun. 96, 94-98 (1993).
[CrossRef]

Opt. Lett.

Phys. Rev. B

H. J. Zeiger, J. Vidal, T. K. Cheng, E. P. Ippen, G. Dresselhaus, and M. S. Dresselhaus, �??Theory for displacive excitation of coherent phonons,�?? Phys. Rev. B 45, 768-778 (1992).
[CrossRef]

J.-I.Takahashi, E. Matsubara, T. Arima, and E. Hanamura, �??Coherent multistep anti-Stokes and stimulated Raman scattering associated with third harmonics in YFeO3 crystals,�?? Phys. Rev. B 68, 155102 (2003).
[CrossRef]

S. Venugopalan, M. Dutta, A. K. Ramdas, and J. P. Remeika, �??Magnetic and vibrational excitations in rareearth orthoferrites: a Raman scattering study,�?? Phys. Rev. B 31, 1490-1497 (1985).
[CrossRef]

Phys. Rev. Lett.

S. E. Harris and A.V. Sokolov, �??Subfemtosecond pulse generation by molecular modulation,�?? Phys. Rev. Lett. 81, 2894-2897 (1998).
[CrossRef]

M. Wittmann, A. Nazarkin, and G. Korn, �??fs-pulse synthesis using phase modulation by impulsively excited molecular vibrations,�?? Phys. Rev. Lett. 84, 5508-5511 (2000).
[CrossRef] [PubMed]

N. A. Papadogiannis, B. Witzel, C. Kalpouzos, and D. Charalambidis, �??Observation of attosecond light localization in higher order harmonic generation,�?? Phys. Rev. Lett. 83, 4289-4292 (1999).
[CrossRef]

Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, �??Generation of coherent soft X rays at 2.7 nm using high harmonics,�?? Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, �??Raman generation by phased and antiphased molecular states,�?? Phys. Rev. Lett. 85, 562-565 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Science

W. S. Warren, H. Rabitz, and M. Dahleh, �??Coherent control of chemical reactions: the dream is alive,�?? Science 259, 1581-1589 (1993).
[CrossRef] [PubMed]

Other

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, Hoboken, N. J., 2003), p. 163.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Spectra accumulated around THG against the relative delay of the light pulses. The origin of the delay is set at the moment when the ω2 pulse arrives earlier enough than the ω1 pulse. The thick lines (at 135 and 360 fs) give the spectra at the moment when the power dependence and the angle-resolved spectra are monitored. The frequencies of the excitation beams are set to be ω1=6593 cm-1, ω2=5993 cm-1, and Δω=600 cm-1. Excitation powers are set to be P1=1.4 mW, P2=1.2 mW.

Fig. 2.
Fig. 2.

Spectra for several excitation powers monitored at the delay of 135 fs, the moment at which is shown in Fig. 1 as a thick curve. (a) P2 is fixed to 1.2 mW and P1 is changed from 0 to 1.4 mW, (b) P1 is fixed to 1.4 mW and P2 is changed from 0 to 1.8 mW. The top spectrum in Fig. 2(a) is the same as the one second-from-the-top in Fig. 2(b). Each spectrum is shifted upward by the value of the excitation power scaled on the vertical axis.

Fig. 3.
Fig. 3.

Angle-resolved spectra at three typical delays (a) -40fs, (b) 360fs, and (c) 135fs in Fig.1. P1=1.4 mW and P2=1.2 mW. The origin of the angle is set in the direction of the 3ω1 signal peak.

Fig. 4.
Fig. 4.

Schemes of (a) multistep CARS: the emitted signal ωn-1 becomes the seed of the next wave-mixing process, (b) multistep THG-CARS: multistep THG-CARS signals are generated by the annihilation of two incident photons from the final excited state of the multi-step CARS process.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A g g = a A g a A ag ( E g ξ g ) ( E g ξ a ) ,

Metrics