M. Koshiba and K. Saitoh, “Finite-element analysis of birefringence and dispersion in actual an idealized holey fiber structures,” Appl. Opt. 42, 6267–6275 (2003).

[CrossRef]
[PubMed]

X. Wang, C.Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).

[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[CrossRef]

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater. 14, 2831–2833 (2002).

[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19, 2238–2244 (2002).

[CrossRef]

Z. Ouyang, C. Jin, D. Zhang, B. Cheng, X. Meng, G. Yang, and J. Li, “Photonic bandgaps in two-dimensional short-range periodic structures,” J. Opt. A: Pure Appl. Opt. 4, 23–28 (2002).

[CrossRef]

X. Zhang, Z. Q. Zhang, and C. T. Chang, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B. 63, 081105-1 to 081105-5 (2001).

[CrossRef]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “The design of two-dimensional photonic quasicrystals by means of a Fourier transform method,” J. Mod. Opt. 48, 9–14 (2001).

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals; diffraction of light and fractal density of modes,” J. Mod. Opt. 47, 1771–1778 (2000).

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumerg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).

[CrossRef]
[PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

See for instance; M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of photonic crystal optical waveguides,” J. Opt. Laser Technol. 18, 1402–1411 (2000).

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).

[CrossRef]

S. S. M. Cheng, L. M. Li, C. T. Chan, and Z. Q. Zhang, “Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems,” Phys. Rev. B 59, 4091–4098 (1999).

[CrossRef]

Y. S. Chan, C. T. Chang, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).

[CrossRef]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).

[CrossRef]
[PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “The design of two-dimensional photonic quasicrystals by means of a Fourier transform method,” J. Mod. Opt. 48, 9–14 (2001).

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals; diffraction of light and fractal density of modes,” J. Mod. Opt. 47, 1771–1778 (2000).

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater. 14, 2831–2833 (2002).

[CrossRef]

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).

[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumerg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).

[CrossRef]
[PubMed]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[CrossRef]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “The design of two-dimensional photonic quasicrystals by means of a Fourier transform method,” J. Mod. Opt. 48, 9–14 (2001).

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals; diffraction of light and fractal density of modes,” J. Mod. Opt. 47, 1771–1778 (2000).

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater. 14, 2831–2833 (2002).

[CrossRef]

X. Wang, C.Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).

[CrossRef]

S. S. M. Cheng, L. M. Li, C. T. Chan, and Z. Q. Zhang, “Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems,” Phys. Rev. B 59, 4091–4098 (1999).

[CrossRef]

Y. S. Chan, C. T. Chang, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).

[CrossRef]

X. Zhang, Z. Q. Zhang, and C. T. Chang, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B. 63, 081105-1 to 081105-5 (2001).

[CrossRef]

Y. S. Chan, C. T. Chang, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).

[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumerg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).

[CrossRef]
[PubMed]

Z. Ouyang, C. Jin, D. Zhang, B. Cheng, X. Meng, G. Yang, and J. Li, “Photonic bandgaps in two-dimensional short-range periodic structures,” J. Opt. A: Pure Appl. Opt. 4, 23–28 (2002).

[CrossRef]

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).

[CrossRef]

S. S. M. Cheng, L. M. Li, C. T. Chan, and Z. Q. Zhang, “Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems,” Phys. Rev. B 59, 4091–4098 (1999).

[CrossRef]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “The design of two-dimensional photonic quasicrystals by means of a Fourier transform method,” J. Mod. Opt. 48, 9–14 (2001).

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals; diffraction of light and fractal density of modes,” J. Mod. Opt. 47, 1771–1778 (2000).

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[CrossRef]

See for instance; M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of photonic crystal optical waveguides,” J. Opt. Laser Technol. 18, 1402–1411 (2000).

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

Z. Ouyang, C. Jin, D. Zhang, B. Cheng, X. Meng, G. Yang, and J. Li, “Photonic bandgaps in two-dimensional short-range periodic structures,” J. Opt. A: Pure Appl. Opt. 4, 23–28 (2002).

[CrossRef]

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).

[CrossRef]

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic crystals; Modeling the flow of light, (Princeton University Press, 1995).

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).

[CrossRef]
[PubMed]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “The design of two-dimensional photonic quasicrystals by means of a Fourier transform method,” J. Mod. Opt. 48, 9–14 (2001).

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals; diffraction of light and fractal density of modes,” J. Mod. Opt. 47, 1771–1778 (2000).

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[CrossRef]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “The design of two-dimensional photonic quasicrystals by means of a Fourier transform method,” J. Mod. Opt. 48, 9–14 (2001).

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals; diffraction of light and fractal density of modes,” J. Mod. Opt. 47, 1771–1778 (2000).

Z. Ouyang, C. Jin, D. Zhang, B. Cheng, X. Meng, G. Yang, and J. Li, “Photonic bandgaps in two-dimensional short-range periodic structures,” J. Opt. A: Pure Appl. Opt. 4, 23–28 (2002).

[CrossRef]

S. S. M. Cheng, L. M. Li, C. T. Chan, and Z. Q. Zhang, “Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems,” Phys. Rev. B 59, 4091–4098 (1999).

[CrossRef]

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).

[CrossRef]

Y. S. Chan, C. T. Chang, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).

[CrossRef]

See for instance; M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of photonic crystal optical waveguides,” J. Opt. Laser Technol. 18, 1402–1411 (2000).

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).

[CrossRef]

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic crystals; Modeling the flow of light, (Princeton University Press, 1995).

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater. 14, 2831–2833 (2002).

[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[CrossRef]

Z. Ouyang, C. Jin, D. Zhang, B. Cheng, X. Meng, G. Yang, and J. Li, “Photonic bandgaps in two-dimensional short-range periodic structures,” J. Opt. A: Pure Appl. Opt. 4, 23–28 (2002).

[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[CrossRef]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “The design of two-dimensional photonic quasicrystals by means of a Fourier transform method,” J. Mod. Opt. 48, 9–14 (2001).

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals; diffraction of light and fractal density of modes,” J. Mod. Opt. 47, 1771–1778 (2000).

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumerg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).

[CrossRef]
[PubMed]

X. Wang, C.Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).

[CrossRef]

Z. Ouyang, C. Jin, D. Zhang, B. Cheng, X. Meng, G. Yang, and J. Li, “Photonic bandgaps in two-dimensional short-range periodic structures,” J. Opt. A: Pure Appl. Opt. 4, 23–28 (2002).

[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumerg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).

[CrossRef]
[PubMed]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).

[CrossRef]
[PubMed]

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater. 14, 2831–2833 (2002).

[CrossRef]

See for instance; K. Sakoda, Optical properties of photonic crystals, (Springer-Verlag Berlin2001)

See for instance; M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of photonic crystal optical waveguides,” J. Opt. Laser Technol. 18, 1402–1411 (2000).

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

X. Wang, C.Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).

[CrossRef]

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).

[CrossRef]

X. Wang, C.Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).

[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[CrossRef]

See for instance; M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of photonic crystal optical waveguides,” J. Opt. Laser Technol. 18, 1402–1411 (2000).

X. Wang, C.Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).

[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[CrossRef]

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater. 14, 2831–2833 (2002).

[CrossRef]

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic crystals; Modeling the flow of light, (Princeton University Press, 1995).

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

Z. Ouyang, C. Jin, D. Zhang, B. Cheng, X. Meng, G. Yang, and J. Li, “Photonic bandgaps in two-dimensional short-range periodic structures,” J. Opt. A: Pure Appl. Opt. 4, 23–28 (2002).

[CrossRef]

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater. 14, 2831–2833 (2002).

[CrossRef]

Z. Ouyang, C. Jin, D. Zhang, B. Cheng, X. Meng, G. Yang, and J. Li, “Photonic bandgaps in two-dimensional short-range periodic structures,” J. Opt. A: Pure Appl. Opt. 4, 23–28 (2002).

[CrossRef]

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).

[CrossRef]

X. Zhang, Z. Q. Zhang, and C. T. Chang, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B. 63, 081105-1 to 081105-5 (2001).

[CrossRef]

X. Zhang, Z. Q. Zhang, and C. T. Chang, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B. 63, 081105-1 to 081105-5 (2001).

[CrossRef]

S. S. M. Cheng, L. M. Li, C. T. Chan, and Z. Q. Zhang, “Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems,” Phys. Rev. B 59, 4091–4098 (1999).

[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumerg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).

[CrossRef]
[PubMed]

X. Wang, C.Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).

[CrossRef]

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75, 1848–1850 (1999).

[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Kock, C. Enrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[CrossRef]

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater. 14, 2831–2833 (2002).

[CrossRef]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “The design of two-dimensional photonic quasicrystals by means of a Fourier transform method,” J. Mod. Opt. 48, 9–14 (2001).

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals; diffraction of light and fractal density of modes,” J. Mod. Opt. 47, 1771–1778 (2000).

Z. Ouyang, C. Jin, D. Zhang, B. Cheng, X. Meng, G. Yang, and J. Li, “Photonic bandgaps in two-dimensional short-range periodic structures,” J. Opt. A: Pure Appl. Opt. 4, 23–28 (2002).

[CrossRef]

See for instance; M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of photonic crystal optical waveguides,” J. Opt. Laser Technol. 18, 1402–1411 (2000).

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).

[CrossRef]
[PubMed]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumerg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).

[CrossRef]
[PubMed]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).

[CrossRef]
[PubMed]

S. S. M. Cheng, L. M. Li, C. T. Chan, and Z. Q. Zhang, “Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems,” Phys. Rev. B 59, 4091–4098 (1999).

[CrossRef]

X. Zhang, Z. Q. Zhang, and C. T. Chang, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B. 63, 081105-1 to 081105-5 (2001).

[CrossRef]

Y. S. Chan, C. T. Chang, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).

[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic crystals; Modeling the flow of light, (Princeton University Press, 1995).

See for instance; K. Sakoda, Optical properties of photonic crystals, (Springer-Verlag Berlin2001)