Abstract

Diffusion of Ge and F was studied during drawing of silica optical fibres. Preforms were drawn using various draw conditions and fibres analysed using the etching and Atomic Force Microscope (AFM) technique. The results were confirmed by comparison with fibre Refractive Index Profiles (RIP). Both Ge and F were found to diffuse at high temperature, 2100°C, and low draw speed, 10m/min. Diffusion simulations showed that most diffusion occurred in the neck-down region. The draw temperature and preform feed rate had a comparable effect on diffusion, whereas preform diameter did not significantly affect the diffusion.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.T. Krause, W.A. Reed, and K.L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. LT-4, 837–840 (1986).
    [CrossRef]
  2. K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave. Technol. 8, 1151–1161 (1990).
    [CrossRef]
  3. H. Yamada and H. Hanafusa, “Mode shape convertor produced by the thermal diffusion of different dopants,” IEEE Photonic Tech. L. 6, 531–533 (1994).
    [CrossRef]
  4. J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181, 226–273 (1995).
    [CrossRef]
  5. M. Fokine, “Thermal stability of chemical compositions gratings in fluorine-germanium-doped silica fibers,” Opt. Lett. 27, 1016–1018 (2002).
    [CrossRef]
  6. B.C. Gibson, S.T. Huntington, J.D. Love, T.G. Ryan, L.W. Cahill, and D.M. Elton, “Controlled modification and direct characterization of multimode-fiber refractive-index profiles,” Appl. Opt. 42, 627–633 (2003).
    [CrossRef] [PubMed]
  7. J. Hersener, G.P. Huber, and J. von Wienskowski, “Semiquantitative X-ray microanalysis on preforms for optical fibres,” Electron. Lett. 20, 208–209 (1984).
    [CrossRef]
  8. A.C. Pugh, R.P. Stratton, and D.B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibres,” J. Mater. Sci. 29, 1036–1040 (1994).
    [CrossRef]
  9. Y. Zhao, S. Fleming, K. Lyytikainen, and L. Poladian, “Nondestructive measurement for arbitrary RIP distribution of optical fiber preforms,” J. Lightwave Technol. (to be published).
  10. P. Pace, S.T. Huntington, K. Lyytikäinen, A. Roberts, and J.D. Love, “Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy,” Submitted to Opt. Express Jan 2004.
  11. K. Lyytikäinen, P. Råback, and J. Ruokolainen, “Numerical simulation of a specialty optical fibre drawing process,” in Proceedings of the 2002 ASME Pressure Vessels and Piping Conference, S. Kawano and V.V. Kudriavtsev, (ASME, New York, 2002), PVP448-2, pp. 267–276.
  12. A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209, 166–174 (1997).
    [CrossRef]
  13. Q. Zhong and D. Inniss, “Characterisation of lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave. Tech. 12, 1517–1523 (1994).
    [CrossRef]
  14. J. Kirchhof, S. Unger, and B. Knappe, “Diffusion processes in lightguide materials,” in Proceedings of Optical Fiber Communications Conference, (2000), 2, pp. 212–214.

2003 (1)

2002 (1)

1997 (1)

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209, 166–174 (1997).
[CrossRef]

1995 (1)

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181, 226–273 (1995).
[CrossRef]

1994 (3)

Q. Zhong and D. Inniss, “Characterisation of lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave. Tech. 12, 1517–1523 (1994).
[CrossRef]

H. Yamada and H. Hanafusa, “Mode shape convertor produced by the thermal diffusion of different dopants,” IEEE Photonic Tech. L. 6, 531–533 (1994).
[CrossRef]

A.C. Pugh, R.P. Stratton, and D.B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibres,” J. Mater. Sci. 29, 1036–1040 (1994).
[CrossRef]

1990 (1)

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave. Technol. 8, 1151–1161 (1990).
[CrossRef]

1986 (1)

J.T. Krause, W.A. Reed, and K.L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. LT-4, 837–840 (1986).
[CrossRef]

1984 (1)

J. Hersener, G.P. Huber, and J. von Wienskowski, “Semiquantitative X-ray microanalysis on preforms for optical fibres,” Electron. Lett. 20, 208–209 (1984).
[CrossRef]

Agarwal, A.

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209, 166–174 (1997).
[CrossRef]

Aizawa, Y.

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave. Technol. 8, 1151–1161 (1990).
[CrossRef]

Cahill, L.W.

Elton, D.M.

Fleming, S.

Y. Zhao, S. Fleming, K. Lyytikainen, and L. Poladian, “Nondestructive measurement for arbitrary RIP distribution of optical fiber preforms,” J. Lightwave Technol. (to be published).

Fokine, M.

Gibson, B.C.

Hanafusa, H.

H. Yamada and H. Hanafusa, “Mode shape convertor produced by the thermal diffusion of different dopants,” IEEE Photonic Tech. L. 6, 531–533 (1994).
[CrossRef]

Hersener, J.

J. Hersener, G.P. Huber, and J. von Wienskowski, “Semiquantitative X-ray microanalysis on preforms for optical fibres,” Electron. Lett. 20, 208–209 (1984).
[CrossRef]

Huber, G.P.

J. Hersener, G.P. Huber, and J. von Wienskowski, “Semiquantitative X-ray microanalysis on preforms for optical fibres,” Electron. Lett. 20, 208–209 (1984).
[CrossRef]

Huntington, S.T.

B.C. Gibson, S.T. Huntington, J.D. Love, T.G. Ryan, L.W. Cahill, and D.M. Elton, “Controlled modification and direct characterization of multimode-fiber refractive-index profiles,” Appl. Opt. 42, 627–633 (2003).
[CrossRef] [PubMed]

P. Pace, S.T. Huntington, K. Lyytikäinen, A. Roberts, and J.D. Love, “Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy,” Submitted to Opt. Express Jan 2004.

Inniss, D.

Q. Zhong and D. Inniss, “Characterisation of lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave. Tech. 12, 1517–1523 (1994).
[CrossRef]

Kawakami, S.

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave. Technol. 8, 1151–1161 (1990).
[CrossRef]

Kawano, S.

K. Lyytikäinen, P. Råback, and J. Ruokolainen, “Numerical simulation of a specialty optical fibre drawing process,” in Proceedings of the 2002 ASME Pressure Vessels and Piping Conference, S. Kawano and V.V. Kudriavtsev, (ASME, New York, 2002), PVP448-2, pp. 267–276.

Kirchhof, J.

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181, 226–273 (1995).
[CrossRef]

J. Kirchhof, S. Unger, and B. Knappe, “Diffusion processes in lightguide materials,” in Proceedings of Optical Fiber Communications Conference, (2000), 2, pp. 212–214.

Klein, K.-F.

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181, 226–273 (1995).
[CrossRef]

Knappe, B.

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181, 226–273 (1995).
[CrossRef]

J. Kirchhof, S. Unger, and B. Knappe, “Diffusion processes in lightguide materials,” in Proceedings of Optical Fiber Communications Conference, (2000), 2, pp. 212–214.

Krause, J.T.

J.T. Krause, W.A. Reed, and K.L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. LT-4, 837–840 (1986).
[CrossRef]

Kudriavtsev, V.V.

K. Lyytikäinen, P. Råback, and J. Ruokolainen, “Numerical simulation of a specialty optical fibre drawing process,” in Proceedings of the 2002 ASME Pressure Vessels and Piping Conference, S. Kawano and V.V. Kudriavtsev, (ASME, New York, 2002), PVP448-2, pp. 267–276.

Lewis, D.B.

A.C. Pugh, R.P. Stratton, and D.B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibres,” J. Mater. Sci. 29, 1036–1040 (1994).
[CrossRef]

Love, J.D.

B.C. Gibson, S.T. Huntington, J.D. Love, T.G. Ryan, L.W. Cahill, and D.M. Elton, “Controlled modification and direct characterization of multimode-fiber refractive-index profiles,” Appl. Opt. 42, 627–633 (2003).
[CrossRef] [PubMed]

P. Pace, S.T. Huntington, K. Lyytikäinen, A. Roberts, and J.D. Love, “Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy,” Submitted to Opt. Express Jan 2004.

Lyytikainen, K.

Y. Zhao, S. Fleming, K. Lyytikainen, and L. Poladian, “Nondestructive measurement for arbitrary RIP distribution of optical fiber preforms,” J. Lightwave Technol. (to be published).

Lyytikäinen, K.

K. Lyytikäinen, P. Råback, and J. Ruokolainen, “Numerical simulation of a specialty optical fibre drawing process,” in Proceedings of the 2002 ASME Pressure Vessels and Piping Conference, S. Kawano and V.V. Kudriavtsev, (ASME, New York, 2002), PVP448-2, pp. 267–276.

P. Pace, S.T. Huntington, K. Lyytikäinen, A. Roberts, and J.D. Love, “Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy,” Submitted to Opt. Express Jan 2004.

Pace, P.

P. Pace, S.T. Huntington, K. Lyytikäinen, A. Roberts, and J.D. Love, “Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy,” Submitted to Opt. Express Jan 2004.

Poladian, L.

Y. Zhao, S. Fleming, K. Lyytikainen, and L. Poladian, “Nondestructive measurement for arbitrary RIP distribution of optical fiber preforms,” J. Lightwave Technol. (to be published).

Pugh, A.C.

A.C. Pugh, R.P. Stratton, and D.B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibres,” J. Mater. Sci. 29, 1036–1040 (1994).
[CrossRef]

Råback, P.

K. Lyytikäinen, P. Råback, and J. Ruokolainen, “Numerical simulation of a specialty optical fibre drawing process,” in Proceedings of the 2002 ASME Pressure Vessels and Piping Conference, S. Kawano and V.V. Kudriavtsev, (ASME, New York, 2002), PVP448-2, pp. 267–276.

Reed, W.A.

J.T. Krause, W.A. Reed, and K.L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. LT-4, 837–840 (1986).
[CrossRef]

Roberts, A.

P. Pace, S.T. Huntington, K. Lyytikäinen, A. Roberts, and J.D. Love, “Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy,” Submitted to Opt. Express Jan 2004.

Ruokolainen, J.

K. Lyytikäinen, P. Råback, and J. Ruokolainen, “Numerical simulation of a specialty optical fibre drawing process,” in Proceedings of the 2002 ASME Pressure Vessels and Piping Conference, S. Kawano and V.V. Kudriavtsev, (ASME, New York, 2002), PVP448-2, pp. 267–276.

Ryan, T.G.

Shiraishi, K.

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave. Technol. 8, 1151–1161 (1990).
[CrossRef]

Stratton, R.P.

A.C. Pugh, R.P. Stratton, and D.B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibres,” J. Mater. Sci. 29, 1036–1040 (1994).
[CrossRef]

Tomozawa, M.

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209, 166–174 (1997).
[CrossRef]

Unger, S.

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181, 226–273 (1995).
[CrossRef]

J. Kirchhof, S. Unger, and B. Knappe, “Diffusion processes in lightguide materials,” in Proceedings of Optical Fiber Communications Conference, (2000), 2, pp. 212–214.

von Wienskowski, J.

J. Hersener, G.P. Huber, and J. von Wienskowski, “Semiquantitative X-ray microanalysis on preforms for optical fibres,” Electron. Lett. 20, 208–209 (1984).
[CrossRef]

Walker, K.L.

J.T. Krause, W.A. Reed, and K.L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. LT-4, 837–840 (1986).
[CrossRef]

Yamada, H.

H. Yamada and H. Hanafusa, “Mode shape convertor produced by the thermal diffusion of different dopants,” IEEE Photonic Tech. L. 6, 531–533 (1994).
[CrossRef]

Zhao, Y.

Y. Zhao, S. Fleming, K. Lyytikainen, and L. Poladian, “Nondestructive measurement for arbitrary RIP distribution of optical fiber preforms,” J. Lightwave Technol. (to be published).

Zhong, Q.

Q. Zhong and D. Inniss, “Characterisation of lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave. Tech. 12, 1517–1523 (1994).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

J. Hersener, G.P. Huber, and J. von Wienskowski, “Semiquantitative X-ray microanalysis on preforms for optical fibres,” Electron. Lett. 20, 208–209 (1984).
[CrossRef]

IEEE Photonic Tech. L. (1)

H. Yamada and H. Hanafusa, “Mode shape convertor produced by the thermal diffusion of different dopants,” IEEE Photonic Tech. L. 6, 531–533 (1994).
[CrossRef]

J. Lightwave Technol. (1)

J.T. Krause, W.A. Reed, and K.L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. LT-4, 837–840 (1986).
[CrossRef]

J. Lightwave. Tech. (1)

Q. Zhong and D. Inniss, “Characterisation of lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave. Tech. 12, 1517–1523 (1994).
[CrossRef]

J. Lightwave. Technol. (1)

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave. Technol. 8, 1151–1161 (1990).
[CrossRef]

J. Mater. Sci. (1)

A.C. Pugh, R.P. Stratton, and D.B. Lewis, “Investigation of elemental diffusion during the drawing and heat treatment of glass optical fibres,” J. Mater. Sci. 29, 1036–1040 (1994).
[CrossRef]

J. Non-Cryst. Solids (2)

J. Kirchhof, S. Unger, K.-F. Klein, and B. Knappe, “Diffusion behaviour of fluorine in silica glass,” J. Non-Cryst. Solids 181, 226–273 (1995).
[CrossRef]

A. Agarwal and M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209, 166–174 (1997).
[CrossRef]

Opt. Lett. (1)

Other (4)

Y. Zhao, S. Fleming, K. Lyytikainen, and L. Poladian, “Nondestructive measurement for arbitrary RIP distribution of optical fiber preforms,” J. Lightwave Technol. (to be published).

P. Pace, S.T. Huntington, K. Lyytikäinen, A. Roberts, and J.D. Love, “Refractive index profiles of Ge-doped optical fibers with nanometer spatial resolution using atomic force microscopy,” Submitted to Opt. Express Jan 2004.

K. Lyytikäinen, P. Råback, and J. Ruokolainen, “Numerical simulation of a specialty optical fibre drawing process,” in Proceedings of the 2002 ASME Pressure Vessels and Piping Conference, S. Kawano and V.V. Kudriavtsev, (ASME, New York, 2002), PVP448-2, pp. 267–276.

J. Kirchhof, S. Unger, and B. Knappe, “Diffusion processes in lightguide materials,” in Proceedings of Optical Fiber Communications Conference, (2000), 2, pp. 212–214.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of (a) Ge-doped 3-ring fibre design, 3R and (b) F-doped fibre, F.

Fig. 2.
Fig. 2.

(a) AFM profiles and (b) RIPs of fibres 3R_1 and 2. (c) Computed and measured profiles for the innermost ring of 3R_1. Preform profile scaled to fibre dimensions.

Fig. 3.
Fig. 3.

(a) Preform F conc. and AFM profile of F1 and (b) AFM profiles of F1 and F3.

Fig. 4.
Fig. 4.

(a) Etching depth of F-depleted outer dip and (b) slope of the core-cladding interface at various draw conditions. All data scaled to nominal 110µm diameter.

Fig. 5.
Fig. 5.

Computed diffusion at different (a) furnace temperatures and (b) draw speeds.

Tables (1)

Tables Icon

Table 1. Draw conditions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

c t = D ( 1 r c r + 2 c r 2 )
D = D o exp ( E RT ) ,

Metrics