Abstract

We have used optical tweezers to trap normal and Plasmodium-infected red blood cells (iRBCs). Two different facets of the behavior of RBCs in infrared light fields emerge from our experiments. Firstly, while the optical field modifies both types of RBCs in the same fashion, by folding the original biconcave disk into a rod-like shape, iRBCs rotate with linearly polarized light whereas normal RBCs do not. Secondly, and in the context of known molecular motors, our measurements indicate that the torque of rotating iRBCs is up to three orders of magnitude larger.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  2. K. Schutze, G. Posl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. 44, 735–746 (1998).
    [PubMed]
  3. M. Zahn and S. Seeger, “Optical tweezers in pharmacology,” Cell. Mol. Biol. 44, 747–761 (1998).
    [PubMed]
  4. A. Clement-Sengewald, K. Schutze, A. Ashkin, G.A. Palma, G. Kerlen, and G. Brem, “Fertilization of bovine oocytesinduced solely with combined laser microbeam and optical tweezers,” J. Assisted Reproduction Genetics 13, 259–265 (1996).
    [Crossref]
  5. M. Zahn, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
    [Crossref] [PubMed]
  6. C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
    [Crossref] [PubMed]
  7. A. Krantz, “Red-cell mediated therapy: opportunities and challenges,” Blood Cells, Molecules and Diseases 23, 58–68 (1997).
    [Crossref]
  8. J.P. Shelby, J. White, K. Ganeshan, P.K. Rathod, and D.T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falcipuram-infected erythrocytes,” PNAS 100, 14618–14622 (2003).
    [Crossref] [PubMed]
  9. H.A. Cranston, C.W. Boylan, G.L. Carroll, S.P. Sutera, J.R. Williamson, I.Y. Gluzman, and D.J. Krogstad, “Plasmodium falcipuram maturation abolishes Physiologic Red cell deformability,” Science 223, 400–403 (1984).
    [Crossref] [PubMed]
  10. H.G. Roggenkamp, F. Jung, R. Schneider, and H. Kiesewetter, “A new device for the routine measurement of erythrocyte deformability,” Biorheology Suppl. 1, 241–243 (1984).
    [PubMed]
  11. R.A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
    [Crossref]
  12. M.E.J. Friese, J. Enger, H. Rubinsztein-Dunlop, and R.N. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
    [Crossref] [PubMed]
  13. N.B. Simpson, K. Dholakia, N. Allen, and M.J. Padgett, “Mechanical equivalent of the spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
    [Crossref] [PubMed]
  14. L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically-trapped microscopic particles,” Science 292, 912–914 (2001)
    [Crossref] [PubMed]
  15. M.E.J. Friese, T.A. Nieminen, R.N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
    [Crossref]
  16. L.D. Landau and E.M. Lifshitz, Theory of elasticity, (Pergamon Press, New York, 1959) p. 56.
  17. S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
    [Crossref] [PubMed]
  18. C. Duranton, S.M. Huber, V. Tanneur, K.S. Lang, B.B. Brand, C.D. Sandu, and F. Lang, “Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes,” Cell Phys. Biochem. 13, 189–198 (2003).
    [Crossref]
  19. H.M. Staines, J.C. Ellory, and K. Kirk, “Perturbation of the pump-leak balance of Na+ and K+ in malaria-infected erythrocytes,” Am. J. Physiol. Cell Physiol. 380, C1575–C1587 (2001).
  20. A.J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
    [Crossref] [PubMed]
  21. C. Lambros and J.P. Vanderberg, “Synchronization of Plasmodium falciparum erythrocytic stages in culture,” J. Parasitol. 65, 418–420 (1979).
    [Crossref] [PubMed]
  22. F.F. Vargas, M.H. Osorio, U.S. Ryan, and M. De Jesus, “Surface charge of endothelial cells estimated from electrophoretic mobility,” Membr. Biochem. 8, 221–227 (1989).
    [Crossref] [PubMed]
  23. B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, and C. Zhu, “Direct observation of catch bonds involving cell-adhesion molecules,” Nature 423, 190–193 (2003).
    [Crossref] [PubMed]
  24. B.M. Cooke, N. Mohandas, and R.L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
    [Crossref]
  25. K. Ley, “Integration of inflammatory signals by rolling neutrophils,” Immunol. Rev. 186, 8–18 (2002).
    [Crossref] [PubMed]
  26. H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, “Direct observation of the rotation of F1-ATPase,” Nature 386, 299–302 (1997).
    [Crossref] [PubMed]
  27. W.S. Ryu, R.M. Berry, and H.C. Berg, “Torque generating units of the flagellar motor of Escherichia coli have a high duty ratio,” Nature 403, 444–447 (2000).
    [Crossref] [PubMed]
  28. K. Kinosita, R. Yasuda, H. Noji, and K. Adachi, “A rotary molecular motor that can work at near 100% efficiency,” Phil. Trans. Roy. Soc. London B 355, 473–489 (2000).
    [Crossref] [PubMed]
  29. A. Goswami, S. Singh, V.D. Redkar, and S. Sharma, “Characterization of P0, a ribosomal phosphoprotein of Plasmodium falciparum,” J. Biol. Chem. 272, 12138–12143 (1997).
    [Crossref] [PubMed]

2003 (4)

J.P. Shelby, J. White, K. Ganeshan, P.K. Rathod, and D.T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falcipuram-infected erythrocytes,” PNAS 100, 14618–14622 (2003).
[Crossref] [PubMed]

C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[Crossref] [PubMed]

C. Duranton, S.M. Huber, V. Tanneur, K.S. Lang, B.B. Brand, C.D. Sandu, and F. Lang, “Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes,” Cell Phys. Biochem. 13, 189–198 (2003).
[Crossref]

B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, and C. Zhu, “Direct observation of catch bonds involving cell-adhesion molecules,” Nature 423, 190–193 (2003).
[Crossref] [PubMed]

2002 (1)

K. Ley, “Integration of inflammatory signals by rolling neutrophils,” Immunol. Rev. 186, 8–18 (2002).
[Crossref] [PubMed]

2001 (3)

B.M. Cooke, N. Mohandas, and R.L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
[Crossref]

L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically-trapped microscopic particles,” Science 292, 912–914 (2001)
[Crossref] [PubMed]

H.M. Staines, J.C. Ellory, and K. Kirk, “Perturbation of the pump-leak balance of Na+ and K+ in malaria-infected erythrocytes,” Am. J. Physiol. Cell Physiol. 380, C1575–C1587 (2001).

2000 (2)

W.S. Ryu, R.M. Berry, and H.C. Berg, “Torque generating units of the flagellar motor of Escherichia coli have a high duty ratio,” Nature 403, 444–447 (2000).
[Crossref] [PubMed]

K. Kinosita, R. Yasuda, H. Noji, and K. Adachi, “A rotary molecular motor that can work at near 100% efficiency,” Phil. Trans. Roy. Soc. London B 355, 473–489 (2000).
[Crossref] [PubMed]

1999 (2)

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

M. Zahn, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
[Crossref] [PubMed]

1998 (3)

K. Schutze, G. Posl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. 44, 735–746 (1998).
[PubMed]

M. Zahn and S. Seeger, “Optical tweezers in pharmacology,” Cell. Mol. Biol. 44, 747–761 (1998).
[PubMed]

M.E.J. Friese, T.A. Nieminen, R.N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

1997 (4)

H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, “Direct observation of the rotation of F1-ATPase,” Nature 386, 299–302 (1997).
[Crossref] [PubMed]

A. Goswami, S. Singh, V.D. Redkar, and S. Sharma, “Characterization of P0, a ribosomal phosphoprotein of Plasmodium falciparum,” J. Biol. Chem. 272, 12138–12143 (1997).
[Crossref] [PubMed]

A. Krantz, “Red-cell mediated therapy: opportunities and challenges,” Blood Cells, Molecules and Diseases 23, 58–68 (1997).
[Crossref]

N.B. Simpson, K. Dholakia, N. Allen, and M.J. Padgett, “Mechanical equivalent of the spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

1996 (2)

M.E.J. Friese, J. Enger, H. Rubinsztein-Dunlop, and R.N. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

A. Clement-Sengewald, K. Schutze, A. Ashkin, G.A. Palma, G. Kerlen, and G. Brem, “Fertilization of bovine oocytesinduced solely with combined laser microbeam and optical tweezers,” J. Assisted Reproduction Genetics 13, 259–265 (1996).
[Crossref]

1994 (1)

A.J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
[Crossref] [PubMed]

1989 (1)

F.F. Vargas, M.H. Osorio, U.S. Ryan, and M. De Jesus, “Surface charge of endothelial cells estimated from electrophoretic mobility,” Membr. Biochem. 8, 221–227 (1989).
[Crossref] [PubMed]

1986 (1)

1984 (2)

H.A. Cranston, C.W. Boylan, G.L. Carroll, S.P. Sutera, J.R. Williamson, I.Y. Gluzman, and D.J. Krogstad, “Plasmodium falcipuram maturation abolishes Physiologic Red cell deformability,” Science 223, 400–403 (1984).
[Crossref] [PubMed]

H.G. Roggenkamp, F. Jung, R. Schneider, and H. Kiesewetter, “A new device for the routine measurement of erythrocyte deformability,” Biorheology Suppl. 1, 241–243 (1984).
[PubMed]

1979 (1)

C. Lambros and J.P. Vanderberg, “Synchronization of Plasmodium falciparum erythrocytic stages in culture,” J. Parasitol. 65, 418–420 (1979).
[Crossref] [PubMed]

1936 (1)

R.A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Adachi, K.

K. Kinosita, R. Yasuda, H. Noji, and K. Adachi, “A rotary molecular motor that can work at near 100% efficiency,” Phil. Trans. Roy. Soc. London B 355, 473–489 (2000).
[Crossref] [PubMed]

Allen, N.

Arlt, J.

L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically-trapped microscopic particles,” Science 292, 912–914 (2001)
[Crossref] [PubMed]

Ashkin, A.

A. Clement-Sengewald, K. Schutze, A. Ashkin, G.A. Palma, G. Kerlen, and G. Brem, “Fertilization of bovine oocytesinduced solely with combined laser microbeam and optical tweezers,” J. Assisted Reproduction Genetics 13, 259–265 (1996).
[Crossref]

A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref] [PubMed]

Berg, H.C.

W.S. Ryu, R.M. Berry, and H.C. Berg, “Torque generating units of the flagellar motor of Escherichia coli have a high duty ratio,” Nature 403, 444–447 (2000).
[Crossref] [PubMed]

Berry, R.M.

W.S. Ryu, R.M. Berry, and H.C. Berg, “Torque generating units of the flagellar motor of Escherichia coli have a high duty ratio,” Nature 403, 444–447 (2000).
[Crossref] [PubMed]

Beth, R.A.

R.A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Bjorkholm, J.E.

Boylan, C.W.

H.A. Cranston, C.W. Boylan, G.L. Carroll, S.P. Sutera, J.R. Williamson, I.Y. Gluzman, and D.J. Krogstad, “Plasmodium falcipuram maturation abolishes Physiologic Red cell deformability,” Science 223, 400–403 (1984).
[Crossref] [PubMed]

Brand, B.B.

C. Duranton, S.M. Huber, V. Tanneur, K.S. Lang, B.B. Brand, C.D. Sandu, and F. Lang, “Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes,” Cell Phys. Biochem. 13, 189–198 (2003).
[Crossref]

Brem, G.

A. Clement-Sengewald, K. Schutze, A. Ashkin, G.A. Palma, G. Kerlen, and G. Brem, “Fertilization of bovine oocytesinduced solely with combined laser microbeam and optical tweezers,” J. Assisted Reproduction Genetics 13, 259–265 (1996).
[Crossref]

Bryant, P.E.

L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically-trapped microscopic particles,” Science 292, 912–914 (2001)
[Crossref] [PubMed]

Bryant, Z.

C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[Crossref] [PubMed]

Bustamante, C.

C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[Crossref] [PubMed]

Carroll, G.L.

H.A. Cranston, C.W. Boylan, G.L. Carroll, S.P. Sutera, J.R. Williamson, I.Y. Gluzman, and D.J. Krogstad, “Plasmodium falcipuram maturation abolishes Physiologic Red cell deformability,” Science 223, 400–403 (1984).
[Crossref] [PubMed]

Chiu, D.T.

J.P. Shelby, J. White, K. Ganeshan, P.K. Rathod, and D.T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falcipuram-infected erythrocytes,” PNAS 100, 14618–14622 (2003).
[Crossref] [PubMed]

Chu, S.

Clement-Sengewald, A.

A. Clement-Sengewald, K. Schutze, A. Ashkin, G.A. Palma, G. Kerlen, and G. Brem, “Fertilization of bovine oocytesinduced solely with combined laser microbeam and optical tweezers,” J. Assisted Reproduction Genetics 13, 259–265 (1996).
[Crossref]

Cooke, B.M.

B.M. Cooke, N. Mohandas, and R.L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
[Crossref]

Coppel, R.L.

B.M. Cooke, N. Mohandas, and R.L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
[Crossref]

Cranston, H.A.

H.A. Cranston, C.W. Boylan, G.L. Carroll, S.P. Sutera, J.R. Williamson, I.Y. Gluzman, and D.J. Krogstad, “Plasmodium falcipuram maturation abolishes Physiologic Red cell deformability,” Science 223, 400–403 (1984).
[Crossref] [PubMed]

De Jesus, M.

F.F. Vargas, M.H. Osorio, U.S. Ryan, and M. De Jesus, “Surface charge of endothelial cells estimated from electrophoretic mobility,” Membr. Biochem. 8, 221–227 (1989).
[Crossref] [PubMed]

Dholakia, K.

L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically-trapped microscopic particles,” Science 292, 912–914 (2001)
[Crossref] [PubMed]

N.B. Simpson, K. Dholakia, N. Allen, and M.J. Padgett, “Mechanical equivalent of the spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

Duranton, C.

C. Duranton, S.M. Huber, V. Tanneur, K.S. Lang, B.B. Brand, C.D. Sandu, and F. Lang, “Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes,” Cell Phys. Biochem. 13, 189–198 (2003).
[Crossref]

Dziedzic, J.M.

Ellory, J.C.

H.M. Staines, J.C. Ellory, and K. Kirk, “Perturbation of the pump-leak balance of Na+ and K+ in malaria-infected erythrocytes,” Am. J. Physiol. Cell Physiol. 380, C1575–C1587 (2001).

Enger, J.

M.E.J. Friese, J. Enger, H. Rubinsztein-Dunlop, and R.N. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

Friese, M.E.J.

M.E.J. Friese, T.A. Nieminen, R.N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

M.E.J. Friese, J. Enger, H. Rubinsztein-Dunlop, and R.N. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

Gallet, F.

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

Ganeshan, K.

J.P. Shelby, J. White, K. Ganeshan, P.K. Rathod, and D.T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falcipuram-infected erythrocytes,” PNAS 100, 14618–14622 (2003).
[Crossref] [PubMed]

Gittes, F.

A.J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
[Crossref] [PubMed]

Gluzman, I.Y.

H.A. Cranston, C.W. Boylan, G.L. Carroll, S.P. Sutera, J.R. Williamson, I.Y. Gluzman, and D.J. Krogstad, “Plasmodium falcipuram maturation abolishes Physiologic Red cell deformability,” Science 223, 400–403 (1984).
[Crossref] [PubMed]

Goswami, A.

A. Goswami, S. Singh, V.D. Redkar, and S. Sharma, “Characterization of P0, a ribosomal phosphoprotein of Plasmodium falciparum,” J. Biol. Chem. 272, 12138–12143 (1997).
[Crossref] [PubMed]

Heckenberg, R.N.

M.E.J. Friese, T.A. Nieminen, R.N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

M.E.J. Friese, J. Enger, H. Rubinsztein-Dunlop, and R.N. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

Henon, S.

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

Howard, J.

A.J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
[Crossref] [PubMed]

Huber, S.M.

C. Duranton, S.M. Huber, V. Tanneur, K.S. Lang, B.B. Brand, C.D. Sandu, and F. Lang, “Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes,” Cell Phys. Biochem. 13, 189–198 (2003).
[Crossref]

Hunt, A.J.

A.J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
[Crossref] [PubMed]

Jung, F.

H.G. Roggenkamp, F. Jung, R. Schneider, and H. Kiesewetter, “A new device for the routine measurement of erythrocyte deformability,” Biorheology Suppl. 1, 241–243 (1984).
[PubMed]

Kerlen, G.

A. Clement-Sengewald, K. Schutze, A. Ashkin, G.A. Palma, G. Kerlen, and G. Brem, “Fertilization of bovine oocytesinduced solely with combined laser microbeam and optical tweezers,” J. Assisted Reproduction Genetics 13, 259–265 (1996).
[Crossref]

Kiesewetter, H.

H.G. Roggenkamp, F. Jung, R. Schneider, and H. Kiesewetter, “A new device for the routine measurement of erythrocyte deformability,” Biorheology Suppl. 1, 241–243 (1984).
[PubMed]

Kinosita, K.

K. Kinosita, R. Yasuda, H. Noji, and K. Adachi, “A rotary molecular motor that can work at near 100% efficiency,” Phil. Trans. Roy. Soc. London B 355, 473–489 (2000).
[Crossref] [PubMed]

H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, “Direct observation of the rotation of F1-ATPase,” Nature 386, 299–302 (1997).
[Crossref] [PubMed]

Kirk, K.

H.M. Staines, J.C. Ellory, and K. Kirk, “Perturbation of the pump-leak balance of Na+ and K+ in malaria-infected erythrocytes,” Am. J. Physiol. Cell Physiol. 380, C1575–C1587 (2001).

Krantz, A.

A. Krantz, “Red-cell mediated therapy: opportunities and challenges,” Blood Cells, Molecules and Diseases 23, 58–68 (1997).
[Crossref]

Krogstad, D.J.

H.A. Cranston, C.W. Boylan, G.L. Carroll, S.P. Sutera, J.R. Williamson, I.Y. Gluzman, and D.J. Krogstad, “Plasmodium falcipuram maturation abolishes Physiologic Red cell deformability,” Science 223, 400–403 (1984).
[Crossref] [PubMed]

Lahr, G.

K. Schutze, G. Posl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. 44, 735–746 (1998).
[PubMed]

Lambros, C.

C. Lambros and J.P. Vanderberg, “Synchronization of Plasmodium falciparum erythrocytic stages in culture,” J. Parasitol. 65, 418–420 (1979).
[Crossref] [PubMed]

Landau, L.D.

L.D. Landau and E.M. Lifshitz, Theory of elasticity, (Pergamon Press, New York, 1959) p. 56.

Lang, F.

C. Duranton, S.M. Huber, V. Tanneur, K.S. Lang, B.B. Brand, C.D. Sandu, and F. Lang, “Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes,” Cell Phys. Biochem. 13, 189–198 (2003).
[Crossref]

Lang, K.S.

C. Duranton, S.M. Huber, V. Tanneur, K.S. Lang, B.B. Brand, C.D. Sandu, and F. Lang, “Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes,” Cell Phys. Biochem. 13, 189–198 (2003).
[Crossref]

Lenormand, G.

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

Ley, K.

K. Ley, “Integration of inflammatory signals by rolling neutrophils,” Immunol. Rev. 186, 8–18 (2002).
[Crossref] [PubMed]

Lifshitz, E.M.

L.D. Landau and E.M. Lifshitz, Theory of elasticity, (Pergamon Press, New York, 1959) p. 56.

Long, M.

B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, and C. Zhu, “Direct observation of catch bonds involving cell-adhesion molecules,” Nature 423, 190–193 (2003).
[Crossref] [PubMed]

MacDonald, M.P.

L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically-trapped microscopic particles,” Science 292, 912–914 (2001)
[Crossref] [PubMed]

Marshall, B.T.

B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, and C. Zhu, “Direct observation of catch bonds involving cell-adhesion molecules,” Nature 423, 190–193 (2003).
[Crossref] [PubMed]

McEver, R.P.

B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, and C. Zhu, “Direct observation of catch bonds involving cell-adhesion molecules,” Nature 423, 190–193 (2003).
[Crossref] [PubMed]

Mohandas, N.

B.M. Cooke, N. Mohandas, and R.L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
[Crossref]

Nieminen, T.A.

M.E.J. Friese, T.A. Nieminen, R.N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Noji, H.

K. Kinosita, R. Yasuda, H. Noji, and K. Adachi, “A rotary molecular motor that can work at near 100% efficiency,” Phil. Trans. Roy. Soc. London B 355, 473–489 (2000).
[Crossref] [PubMed]

H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, “Direct observation of the rotation of F1-ATPase,” Nature 386, 299–302 (1997).
[Crossref] [PubMed]

Osorio, M.H.

F.F. Vargas, M.H. Osorio, U.S. Ryan, and M. De Jesus, “Surface charge of endothelial cells estimated from electrophoretic mobility,” Membr. Biochem. 8, 221–227 (1989).
[Crossref] [PubMed]

Padgett, M.J.

Palma, G.A.

A. Clement-Sengewald, K. Schutze, A. Ashkin, G.A. Palma, G. Kerlen, and G. Brem, “Fertilization of bovine oocytesinduced solely with combined laser microbeam and optical tweezers,” J. Assisted Reproduction Genetics 13, 259–265 (1996).
[Crossref]

Paterson, L.

L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically-trapped microscopic particles,” Science 292, 912–914 (2001)
[Crossref] [PubMed]

Piper, J.W.

B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, and C. Zhu, “Direct observation of catch bonds involving cell-adhesion molecules,” Nature 423, 190–193 (2003).
[Crossref] [PubMed]

Posl, G.

K. Schutze, G. Posl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. 44, 735–746 (1998).
[PubMed]

Rathod, P.K.

J.P. Shelby, J. White, K. Ganeshan, P.K. Rathod, and D.T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falcipuram-infected erythrocytes,” PNAS 100, 14618–14622 (2003).
[Crossref] [PubMed]

Redkar, V.D.

A. Goswami, S. Singh, V.D. Redkar, and S. Sharma, “Characterization of P0, a ribosomal phosphoprotein of Plasmodium falciparum,” J. Biol. Chem. 272, 12138–12143 (1997).
[Crossref] [PubMed]

Renken, J.

M. Zahn, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
[Crossref] [PubMed]

Richert, A.

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

Roggenkamp, H.G.

H.G. Roggenkamp, F. Jung, R. Schneider, and H. Kiesewetter, “A new device for the routine measurement of erythrocyte deformability,” Biorheology Suppl. 1, 241–243 (1984).
[PubMed]

Rubinsztein-Dunlop, H.

M.E.J. Friese, T.A. Nieminen, R.N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

M.E.J. Friese, J. Enger, H. Rubinsztein-Dunlop, and R.N. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

Ryan, U.S.

F.F. Vargas, M.H. Osorio, U.S. Ryan, and M. De Jesus, “Surface charge of endothelial cells estimated from electrophoretic mobility,” Membr. Biochem. 8, 221–227 (1989).
[Crossref] [PubMed]

Ryu, W.S.

W.S. Ryu, R.M. Berry, and H.C. Berg, “Torque generating units of the flagellar motor of Escherichia coli have a high duty ratio,” Nature 403, 444–447 (2000).
[Crossref] [PubMed]

Sandu, C.D.

C. Duranton, S.M. Huber, V. Tanneur, K.S. Lang, B.B. Brand, C.D. Sandu, and F. Lang, “Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes,” Cell Phys. Biochem. 13, 189–198 (2003).
[Crossref]

Schneider, R.

H.G. Roggenkamp, F. Jung, R. Schneider, and H. Kiesewetter, “A new device for the routine measurement of erythrocyte deformability,” Biorheology Suppl. 1, 241–243 (1984).
[PubMed]

Schutze, K.

K. Schutze, G. Posl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. 44, 735–746 (1998).
[PubMed]

A. Clement-Sengewald, K. Schutze, A. Ashkin, G.A. Palma, G. Kerlen, and G. Brem, “Fertilization of bovine oocytesinduced solely with combined laser microbeam and optical tweezers,” J. Assisted Reproduction Genetics 13, 259–265 (1996).
[Crossref]

Seeger, S.

M. Zahn, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
[Crossref] [PubMed]

M. Zahn and S. Seeger, “Optical tweezers in pharmacology,” Cell. Mol. Biol. 44, 747–761 (1998).
[PubMed]

Sharma, S.

A. Goswami, S. Singh, V.D. Redkar, and S. Sharma, “Characterization of P0, a ribosomal phosphoprotein of Plasmodium falciparum,” J. Biol. Chem. 272, 12138–12143 (1997).
[Crossref] [PubMed]

Shelby, J.P.

J.P. Shelby, J. White, K. Ganeshan, P.K. Rathod, and D.T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falcipuram-infected erythrocytes,” PNAS 100, 14618–14622 (2003).
[Crossref] [PubMed]

Sibbett, W.

L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically-trapped microscopic particles,” Science 292, 912–914 (2001)
[Crossref] [PubMed]

Simpson, N.B.

Singh, S.

A. Goswami, S. Singh, V.D. Redkar, and S. Sharma, “Characterization of P0, a ribosomal phosphoprotein of Plasmodium falciparum,” J. Biol. Chem. 272, 12138–12143 (1997).
[Crossref] [PubMed]

Smith, S.B.

C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[Crossref] [PubMed]

Staines, H.M.

H.M. Staines, J.C. Ellory, and K. Kirk, “Perturbation of the pump-leak balance of Na+ and K+ in malaria-infected erythrocytes,” Am. J. Physiol. Cell Physiol. 380, C1575–C1587 (2001).

Sutera, S.P.

H.A. Cranston, C.W. Boylan, G.L. Carroll, S.P. Sutera, J.R. Williamson, I.Y. Gluzman, and D.J. Krogstad, “Plasmodium falcipuram maturation abolishes Physiologic Red cell deformability,” Science 223, 400–403 (1984).
[Crossref] [PubMed]

Tanneur, V.

C. Duranton, S.M. Huber, V. Tanneur, K.S. Lang, B.B. Brand, C.D. Sandu, and F. Lang, “Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes,” Cell Phys. Biochem. 13, 189–198 (2003).
[Crossref]

Vanderberg, J.P.

C. Lambros and J.P. Vanderberg, “Synchronization of Plasmodium falciparum erythrocytic stages in culture,” J. Parasitol. 65, 418–420 (1979).
[Crossref] [PubMed]

Vargas, F.F.

F.F. Vargas, M.H. Osorio, U.S. Ryan, and M. De Jesus, “Surface charge of endothelial cells estimated from electrophoretic mobility,” Membr. Biochem. 8, 221–227 (1989).
[Crossref] [PubMed]

White, J.

J.P. Shelby, J. White, K. Ganeshan, P.K. Rathod, and D.T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falcipuram-infected erythrocytes,” PNAS 100, 14618–14622 (2003).
[Crossref] [PubMed]

Williamson, J.R.

H.A. Cranston, C.W. Boylan, G.L. Carroll, S.P. Sutera, J.R. Williamson, I.Y. Gluzman, and D.J. Krogstad, “Plasmodium falcipuram maturation abolishes Physiologic Red cell deformability,” Science 223, 400–403 (1984).
[Crossref] [PubMed]

Yago, T.

B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, and C. Zhu, “Direct observation of catch bonds involving cell-adhesion molecules,” Nature 423, 190–193 (2003).
[Crossref] [PubMed]

Yasuda, R.

K. Kinosita, R. Yasuda, H. Noji, and K. Adachi, “A rotary molecular motor that can work at near 100% efficiency,” Phil. Trans. Roy. Soc. London B 355, 473–489 (2000).
[Crossref] [PubMed]

H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, “Direct observation of the rotation of F1-ATPase,” Nature 386, 299–302 (1997).
[Crossref] [PubMed]

Yoshida, M.

H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, “Direct observation of the rotation of F1-ATPase,” Nature 386, 299–302 (1997).
[Crossref] [PubMed]

Zahn, M.

M. Zahn, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
[Crossref] [PubMed]

M. Zahn and S. Seeger, “Optical tweezers in pharmacology,” Cell. Mol. Biol. 44, 747–761 (1998).
[PubMed]

Zhu, C.

B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, and C. Zhu, “Direct observation of catch bonds involving cell-adhesion molecules,” Nature 423, 190–193 (2003).
[Crossref] [PubMed]

Adv. Parasitol. (1)

B.M. Cooke, N. Mohandas, and R.L. Coppel, “The malaria-infected red blood cell: structural and functional changes,” Adv. Parasitol. 50, 1–86 (2001).
[Crossref]

Am. J. Physiol. Cell Physiol. (1)

H.M. Staines, J.C. Ellory, and K. Kirk, “Perturbation of the pump-leak balance of Na+ and K+ in malaria-infected erythrocytes,” Am. J. Physiol. Cell Physiol. 380, C1575–C1587 (2001).

Biophys. J. (2)

A.J. Hunt, F. Gittes, and J. Howard, “The force exerted by a single kinesin molecule against a viscous load,” Biophys. J. 67, 766–781 (1994).
[Crossref] [PubMed]

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76, 1145–1151 (1999).
[Crossref] [PubMed]

Biorheology Suppl. (1)

H.G. Roggenkamp, F. Jung, R. Schneider, and H. Kiesewetter, “A new device for the routine measurement of erythrocyte deformability,” Biorheology Suppl. 1, 241–243 (1984).
[PubMed]

Blood Cells, Molecules and Diseases (1)

A. Krantz, “Red-cell mediated therapy: opportunities and challenges,” Blood Cells, Molecules and Diseases 23, 58–68 (1997).
[Crossref]

Cell Phys. Biochem. (1)

C. Duranton, S.M. Huber, V. Tanneur, K.S. Lang, B.B. Brand, C.D. Sandu, and F. Lang, “Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes,” Cell Phys. Biochem. 13, 189–198 (2003).
[Crossref]

Cell. Mol. Biol. (2)

K. Schutze, G. Posl, and G. Lahr, “Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine,” Cell. Mol. Biol. 44, 735–746 (1998).
[PubMed]

M. Zahn and S. Seeger, “Optical tweezers in pharmacology,” Cell. Mol. Biol. 44, 747–761 (1998).
[PubMed]

FEBS Lett. (1)

M. Zahn, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
[Crossref] [PubMed]

Immunol. Rev. (1)

K. Ley, “Integration of inflammatory signals by rolling neutrophils,” Immunol. Rev. 186, 8–18 (2002).
[Crossref] [PubMed]

J. Assisted Reproduction Genetics (1)

A. Clement-Sengewald, K. Schutze, A. Ashkin, G.A. Palma, G. Kerlen, and G. Brem, “Fertilization of bovine oocytesinduced solely with combined laser microbeam and optical tweezers,” J. Assisted Reproduction Genetics 13, 259–265 (1996).
[Crossref]

J. Biol. Chem. (1)

A. Goswami, S. Singh, V.D. Redkar, and S. Sharma, “Characterization of P0, a ribosomal phosphoprotein of Plasmodium falciparum,” J. Biol. Chem. 272, 12138–12143 (1997).
[Crossref] [PubMed]

J. Parasitol. (1)

C. Lambros and J.P. Vanderberg, “Synchronization of Plasmodium falciparum erythrocytic stages in culture,” J. Parasitol. 65, 418–420 (1979).
[Crossref] [PubMed]

Membr. Biochem. (1)

F.F. Vargas, M.H. Osorio, U.S. Ryan, and M. De Jesus, “Surface charge of endothelial cells estimated from electrophoretic mobility,” Membr. Biochem. 8, 221–227 (1989).
[Crossref] [PubMed]

Nature (5)

B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, and C. Zhu, “Direct observation of catch bonds involving cell-adhesion molecules,” Nature 423, 190–193 (2003).
[Crossref] [PubMed]

M.E.J. Friese, T.A. Nieminen, R.N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, “Direct observation of the rotation of F1-ATPase,” Nature 386, 299–302 (1997).
[Crossref] [PubMed]

W.S. Ryu, R.M. Berry, and H.C. Berg, “Torque generating units of the flagellar motor of Escherichia coli have a high duty ratio,” Nature 403, 444–447 (2000).
[Crossref] [PubMed]

C. Bustamante, Z. Bryant, and S.B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[Crossref] [PubMed]

Opt. Lett. (2)

Phil. Trans. Roy. Soc. London B (1)

K. Kinosita, R. Yasuda, H. Noji, and K. Adachi, “A rotary molecular motor that can work at near 100% efficiency,” Phil. Trans. Roy. Soc. London B 355, 473–489 (2000).
[Crossref] [PubMed]

Phys. Rev. (1)

R.A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[Crossref]

Phys. Rev. A (1)

M.E.J. Friese, J. Enger, H. Rubinsztein-Dunlop, and R.N. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref] [PubMed]

PNAS (1)

J.P. Shelby, J. White, K. Ganeshan, P.K. Rathod, and D.T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falcipuram-infected erythrocytes,” PNAS 100, 14618–14622 (2003).
[Crossref] [PubMed]

Science (2)

H.A. Cranston, C.W. Boylan, G.L. Carroll, S.P. Sutera, J.R. Williamson, I.Y. Gluzman, and D.J. Krogstad, “Plasmodium falcipuram maturation abolishes Physiologic Red cell deformability,” Science 223, 400–403 (1984).
[Crossref] [PubMed]

L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, “Controlled rotation of optically-trapped microscopic particles,” Science 292, 912–914 (2001)
[Crossref] [PubMed]

Other (1)

L.D. Landau and E.M. Lifshitz, Theory of elasticity, (Pergamon Press, New York, 1959) p. 56.

Supplementary Material (4)

» Media 1: MPG (326 KB)     
» Media 2: MPG (1012 KB)     
» Media 3: MPG (1266 KB)     
» Media 4: MPG (1174 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Time evolution of folding (334 KB) and unfolding (1.04 MB) of red blood cells (RBCs) infected with Plasmodium falciparum [29] in an optical trap using a linearly polarized infrared laser. Panel a shows the initial state where an infected RBC approaches the laser focus (ca. 1 µm diameter). Panels b and c show the trapped RBC undergoing folding and twisting due to polarization-induced optical forces such that a rod-like shape is achieved within ~2 s. On removal of the laser beam, unfolding to the original shape occurs (panels d-f) on a longer time scale.

Fig. 2.
Fig. 2.

Discrete frames from a movie (1.29 MB) depicting rotation of an infected RBC in the optical trap. The arrow helps identify the direction of rotation. Times associated with each frame are indicated; the speed of rotation was 120 revolutions per minute (rpm). The rotational speeds achieved in these experiments covered the range 19–300 rpm. The untrapped cells visible in the frames were outside the laser focus and underwent Brownian motion.

Fig. 3.
Fig. 3.

Controlling the sense of rotation by altering the position of the infected RBC with respect to the focal plane of laser beam. If the cell is at position a), anti-clockwise rotation is observed (1.29 MB). The cell at position b) rotates in clockwise direction (1.20 MB). The rotational speeds remain the same as long as laser power does not change. The k-vector (see text) is along the laser propagation direction while the E-vector lies perpendicular to it but in the same plane.

Metrics