Abstract

Beams of light with helical wavefronts can be focused into ring-like optical traps known as optical vortices. The orbital angular momentum carried by photons in helical modes can be transferred to trapped mesoscopic objects and thereby coupled to a surrounding fluid. We demonstrate that arrays of optical vortices created with the holographic optical tweezer technique can assemble colloidal spheres into dynamically reconfigurable microoptomechanical pumps assembled by optical gradient forces and actuated by photon orbital angular momentum.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, �??Monolithic microfabricated valves and pumps by multilayer soft lithography,�?? Science 288, 113�??116 (2000)
    [CrossRef]
  2. L. Bousse, C. Cohen, T. Nikiforov, A. Chow, A. R. Kopf-Sill, R. Dubrow, and J. W. Parce, �??Electrokinetically controlled microfluidic analysis systems,�?? Annu. Rev. Biophys. Biomolecular Structure 29, 155�??181 (2000)
    [CrossRef]
  3. A. Terray, J. Oakey, and D. W. M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841�??1844 (2002)
    [CrossRef] [PubMed]
  4. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,�?? J. Mod. Opt. 42, 217�??223 (1995)
    [CrossRef]
  5. N. B. Simpson, L. Allen, and M. J. Padgett, �??Optical tweezers and optical spanners with Laguerre-Gaussian modes,�?? J. Mod. Opt. 43, 2485�??2491 (1996)
    [CrossRef]
  6. K. T. Gahagan and G. A. Swartzlander, �??Optical vortex trapping of particles,�?? Opt. Lett. 21, 827�??829 (1996)
    [CrossRef] [PubMed]
  7. E. R. Dufresne and D. G. Grier, �??Optical tweezer arrays and optical substrates created with diffractive optical elements,�?? Rev. Sci. Instr. 69, 1974�??1977 (1998)
    [CrossRef]
  8. L. Allen, M. J. Padgett, and M. Babiker, �??The orbital angular momentum of light,�?? Progress in Optics 39, 291�?? 372 (1999)
    [CrossRef]
  9. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,�?? Phys. Rev. Lett. 75, 826�??829 (1995)
    [CrossRef] [PubMed]
  10. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, �??Optical angular-momentum transfer to trapped absorbing particles,�?? Phys. Rev. A 54, 1593�??1596 (1996)
    [CrossRef] [PubMed]
  11. A. T. O�??Neil, I. MacVicar, L. Allen, and M. J. Padgett, �??Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,�?? Phys. Rev. Lett. 88, 053,601 (2002)
  12. J. E. Curtis and D. G. Grier, �??Structure of optical vortices,�?? Phys. Rev. Lett. 90, 133,901 (2003)
    [CrossRef]
  13. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288�??290 (1986)
    [CrossRef] [PubMed]
  14. J. E. Curtis, B. A. Koss, and D. G. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Commun. 207, 169�??175 (2002)
    [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999), particularly Chapter 9. Also, K. Ladavac and D. G. Grier, in preparation (2004)
  16. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, New York, 1992)
    [CrossRef]
  17. J. R. Blake, �??A note on the image system for a stokeslet in a no-slip boundary,�?? Proc. Cambridge Phil. Soc. 70, 303�??310 (1971)
    [CrossRef]
  18. N. Liron and S. Mochon, �??Stokes flow for a stokeslet between two parallel flat plates,�?? J. Eng. Math. 10, 287 (1976)
    [CrossRef]
  19. E. R. Dufresne, D. Altman, and D. G. Grier, �??Brownian dynamics of a sphere in a slit pore,�?? Europhys. Lett. 53, 264�??270 (2001)
    [CrossRef]
  20. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, �??Optical micromanipulation using a Bessel light beam,�?? Opt. Commun. 197, 239�??245 (2001)
    [CrossRef]
  21. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, �??Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,�?? Nature 419, 145�??147 (2002)
    [CrossRef] [PubMed]

Annu. Rev. Biophys. Biomolecular Structu

L. Bousse, C. Cohen, T. Nikiforov, A. Chow, A. R. Kopf-Sill, R. Dubrow, and J. W. Parce, �??Electrokinetically controlled microfluidic analysis systems,�?? Annu. Rev. Biophys. Biomolecular Structure 29, 155�??181 (2000)
[CrossRef]

Europhys. Lett.

E. R. Dufresne, D. Altman, and D. G. Grier, �??Brownian dynamics of a sphere in a slit pore,�?? Europhys. Lett. 53, 264�??270 (2001)
[CrossRef]

J. Eng. Math.

N. Liron and S. Mochon, �??Stokes flow for a stokeslet between two parallel flat plates,�?? J. Eng. Math. 10, 287 (1976)
[CrossRef]

J. Mod. Opt

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,�?? J. Mod. Opt. 42, 217�??223 (1995)
[CrossRef]

J. Mod. Opt.

N. B. Simpson, L. Allen, and M. J. Padgett, �??Optical tweezers and optical spanners with Laguerre-Gaussian modes,�?? J. Mod. Opt. 43, 2485�??2491 (1996)
[CrossRef]

Nature

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, �??Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,�?? Nature 419, 145�??147 (2002)
[CrossRef] [PubMed]

Opt. Commun.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, �??Optical micromanipulation using a Bessel light beam,�?? Opt. Commun. 197, 239�??245 (2001)
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Commun. 207, 169�??175 (2002)
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, �??Optical angular-momentum transfer to trapped absorbing particles,�?? Phys. Rev. A 54, 1593�??1596 (1996)
[CrossRef] [PubMed]

Phys. Rev. Lett

A. T. O�??Neil, I. MacVicar, L. Allen, and M. J. Padgett, �??Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,�?? Phys. Rev. Lett. 88, 053,601 (2002)

Phys. Rev. Lett.

J. E. Curtis and D. G. Grier, �??Structure of optical vortices,�?? Phys. Rev. Lett. 90, 133,901 (2003)
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,�?? Phys. Rev. Lett. 75, 826�??829 (1995)
[CrossRef] [PubMed]

Proc. Cambridge Phil. Soc

J. R. Blake, �??A note on the image system for a stokeslet in a no-slip boundary,�?? Proc. Cambridge Phil. Soc. 70, 303�??310 (1971)
[CrossRef]

Progress in Optics

L. Allen, M. J. Padgett, and M. Babiker, �??The orbital angular momentum of light,�?? Progress in Optics 39, 291�?? 372 (1999)
[CrossRef]

Rev. Sci. Instr.

E. R. Dufresne and D. G. Grier, �??Optical tweezer arrays and optical substrates created with diffractive optical elements,�?? Rev. Sci. Instr. 69, 1974�??1977 (1998)
[CrossRef]

Science

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, �??Monolithic microfabricated valves and pumps by multilayer soft lithography,�?? Science 288, 113�??116 (2000)
[CrossRef]

A. Terray, J. Oakey, and D. W. M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841�??1844 (2002)
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999), particularly Chapter 9. Also, K. Ladavac and D. G. Grier, in preparation (2004)

C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, New York, 1992)
[CrossRef]

Supplementary Material (1)

» Media 1: MPG (397 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Creating a microfluidic pump from a beam of light. (a) Gray-scale representation of the phase hologram, φ(r⃗), encoding an optomechanical pump. The color bar translates gray-scale to phase shifts in radians. The inset is an expanded view near the singularity at the optical axis. (b) Focused image of the 3×2 optical vortex array projected by φ(r⃗). (c) The same optical vortex array after aberration correction. (d) (Movie 407 kB) Bright-field image of 800 nm diameter silica spheres trapped in the array of optimized optical vortices.

Fig. 2.
Fig. 2.

Time-lapse composite of 16 images in half-second intervals of colloidal spheres in the holographic pump at P=2.4 W. Circles identify the trajectory of a single sphere as it moves 25 µm to the left in 7 sec. Its peak speed is 5 µm/sec.

Fig. 3.
Fig. 3.

(a) Circulation rate in revolutions per minute (rpm) and (b) axial flow speed, as a function of laser power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v ( r ) = v ( R ) ( R r ) 2

Metrics