Abstract

We demonstrate that the fundamental mode of the two coupled photonic crystal waveguides (PCWs) can be odd parity in a triangular photonic crystal and their dispersion curves do intersect. Thus, the PCWs are decoupled at the crossing point. By employing the decoupling at the crossing-point frequency and ultra short coupling length for another frequency, we designed a dual-wavelength demultiplexer with a coupling length of only two wavelengths and output power ratio as high as 15 dB. A loop-shape PCW is adapted to eliminate the backward energy flow.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission on solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons on certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2488 (1987).
    [Crossref] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals—Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  4. T. F. Krauss and R. M. De La Rue, “Photonic crystals in the optical regime—past, present and future,” Prog. Quantum Electron. 23, 51–96 (1999).
    [Crossref]
  5. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
    [Crossref]
  6. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides on photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
    [Crossref]
  7. V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
    [Crossref]
  8. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902–1 (2001).
    [Crossref] [PubMed]
  9. A. Mekis, J. C. Chen, I Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [Crossref] [PubMed]
  10. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at ~1.6-µm wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27, 1400–1402 (2002).
    [Crossref]
  11. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
    [Crossref]
  12. A. Martinez, A. Griol, P. Sanchis, and J. Marti, “Mach-Zehnder interferometer employing coupled-resonator optical waveguides,” Opt. Lett. 28, 405–407 (2003).
    [Crossref] [PubMed]
  13. K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825–829 (2002).
    [Crossref]
  14. A. Martinez, F. Cuesta, and J. Marti, “Ultrashort 2-D photonic crystal directional couplers,” IEEE Photon. Technol. Lett. 15, 694–696 (2003).
    [Crossref]
  15. A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048–1059 (2002).
    [Crossref] [PubMed]
  16. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970–1975 (2001).
    [Crossref]
  17. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Optics 40, 2247–2252 (2001).
    [Crossref]
  18. S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
    [Crossref]
  19. C. G. Someda, “Antiresonant decoupling of parallel dielectric waveguides,” Opt. Lett. 16, 1240–1242 (1991).
    [Crossref] [PubMed]
  20. I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Intermediate-mode-assisted optical directional couplers via embedded periodic structure,” IEEE J. Quantum Electron. 34, 1772–1781 (1998).
    [Crossref]
  21. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Norwood, MA, Artech, 1995).
  22. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref] [PubMed]
  23. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in the three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
    [Crossref] [PubMed]
  24. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19, 2241–2249 (2002).
    [Crossref]
  25. S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum. Electron. 38, 1349–1352 (2002).
    [Crossref]

2003 (2)

A. Martinez, A. Griol, P. Sanchis, and J. Marti, “Mach-Zehnder interferometer employing coupled-resonator optical waveguides,” Opt. Lett. 28, 405–407 (2003).
[Crossref] [PubMed]

A. Martinez, F. Cuesta, and J. Marti, “Ultrashort 2-D photonic crystal directional couplers,” IEEE Photon. Technol. Lett. 15, 694–696 (2003).
[Crossref]

2002 (7)

2001 (4)

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970–1975 (2001).
[Crossref]

A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Optics 40, 2247–2252 (2001).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902–1 (2001).
[Crossref] [PubMed]

2000 (3)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides on photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in the three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[Crossref] [PubMed]

1999 (1)

T. F. Krauss and R. M. De La Rue, “Photonic crystals in the optical regime—past, present and future,” Prog. Quantum Electron. 23, 51–96 (1999).
[Crossref]

1998 (1)

I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Intermediate-mode-assisted optical directional couplers via embedded periodic structure,” IEEE J. Quantum Electron. 34, 1772–1781 (1998).
[Crossref]

1996 (1)

A. Mekis, J. C. Chen, I Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

1994 (1)

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

1991 (1)

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission on solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons on certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2488 (1987).
[Crossref] [PubMed]

Alerhand, O. L.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

Astratov, V. N.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Bayindir, M.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in the three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[Crossref] [PubMed]

Boscolo, S.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[Crossref]

Bur, J.

Chen, J. C.

A. Mekis, J. C. Chen, I Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Chow, E.

Cuesta, F.

A. Martinez, F. Cuesta, and J. Marti, “Ultrashort 2-D photonic crystal directional couplers,” IEEE Photon. Technol. Lett. 15, 694–696 (2003).
[Crossref]

Culshaw, I. S.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

De La Rue, R. M.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

T. F. Krauss and R. M. De La Rue, “Photonic crystals in the optical regime—past, present and future,” Prog. Quantum Electron. 23, 51–96 (1999).
[Crossref]

Devenyi, A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

Fan, S.

M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
[Crossref]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides on photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

A. Mekis, J. C. Chen, I Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Golyatin, V. Y.

S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum. Electron. 38, 1349–1352 (2002).
[Crossref]

Griol, A.

Hosomi, K.

K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825–829 (2002).
[Crossref]

Ibanescu, M.

Ippen, E.

Joannopoulos, J. D.

M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002).
[Crossref]

S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at ~1.6-µm wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27, 1400–1402 (2002).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides on photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

A. Mekis, J. C. Chen, I Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals—Molding the Flow of Light (Princeton University Press, Princeton, 1995).

John, S.

S. John, “Strong localization of photons on certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2488 (1987).
[Crossref] [PubMed]

Johnson, S. G.

Kash, K.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

Katsuyama, T.

K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825–829 (2002).
[Crossref]

Kivshar, Y. S.

Koshiba, M.

Krauss, T. F.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

T. F. Krauss and R. M. De La Rue, “Photonic crystals in the optical regime—past, present and future,” Prog. Quantum Electron. 23, 51–96 (1999).
[Crossref]

Kuchinsky, S.

S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum. Electron. 38, 1349–1352 (2002).
[Crossref]

Kurland, I

A. Mekis, J. C. Chen, I Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Kutikov, A. Y.

S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum. Electron. 38, 1349–1352 (2002).
[Crossref]

Lin, S. Y.

Marti, J.

A. Martinez, A. Griol, P. Sanchis, and J. Marti, “Mach-Zehnder interferometer employing coupled-resonator optical waveguides,” Opt. Lett. 28, 405–407 (2003).
[Crossref] [PubMed]

A. Martinez, F. Cuesta, and J. Marti, “Ultrashort 2-D photonic crystal directional couplers,” IEEE Photon. Technol. Lett. 15, 694–696 (2003).
[Crossref]

Martinez, A.

A. Martinez, F. Cuesta, and J. Marti, “Ultrashort 2-D photonic crystal directional couplers,” IEEE Photon. Technol. Lett. 15, 694–696 (2003).
[Crossref]

A. Martinez, A. Griol, P. Sanchis, and J. Marti, “Mach-Zehnder interferometer employing coupled-resonator optical waveguides,” Opt. Lett. 28, 405–407 (2003).
[Crossref] [PubMed]

Meade, R. D.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals—Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Mekis, A.

A. Mekis, J. C. Chen, I Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Midrio, M.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[Crossref]

Mingaleev, S. F.

Moiseyev, N.

I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Intermediate-mode-assisted optical directional couplers via embedded periodic structure,” IEEE J. Quantum Electron. 34, 1772–1781 (1998).
[Crossref]

Nedeljkovic, D.

S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum. Electron. 38, 1349–1352 (2002).
[Crossref]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902–1 (2001).
[Crossref] [PubMed]

Orenstein, M.

I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Intermediate-mode-assisted optical directional couplers via embedded periodic structure,” IEEE J. Quantum Electron. 34, 1772–1781 (1998).
[Crossref]

Ozbay, E.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in the three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[Crossref] [PubMed]

Pearsall, T. P.

S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum. Electron. 38, 1349–1352 (2002).
[Crossref]

Prather, D. W.

A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048–1059 (2002).
[Crossref] [PubMed]

A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Optics 40, 2247–2252 (2001).
[Crossref]

Sanchis, P.

Sharkawy, A.

A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048–1059 (2002).
[Crossref] [PubMed]

A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Optics 40, 2247–2252 (2001).
[Crossref]

Shi, S.

A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048–1059 (2002).
[Crossref] [PubMed]

A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Optics 40, 2247–2252 (2001).
[Crossref]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902–1 (2001).
[Crossref] [PubMed]

Skolnick, M. S.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Smith, D. A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

Soljacic, M.

Someda, C. G.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[Crossref]

C. G. Someda, “Antiresonant decoupling of parallel dielectric waveguides,” Opt. Lett. 16, 1240–1242 (1991).
[Crossref] [PubMed]

Stevenson, R. M.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Norwood, MA, Artech, 1995).

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902–1 (2001).
[Crossref] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902–1 (2001).
[Crossref] [PubMed]

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in the three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[Crossref] [PubMed]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides on photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

A. Mekis, J. C. Chen, I Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

Vorobeichik, I.

I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Intermediate-mode-assisted optical directional couplers via embedded periodic structure,” IEEE J. Quantum Electron. 34, 1772–1781 (1998).
[Crossref]

Whittaker, D. M.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals—Molding the Flow of Light (Princeton University Press, Princeton, 1995).

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission on solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902–1 (2001).
[Crossref] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902–1 (2001).
[Crossref] [PubMed]

Appl. Optics (1)

A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Optics 40, 2247–2252 (2001).
[Crossref]

Appl. Phys. Lett. (1)

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

IEEE J. Quantum Electron. (3)

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[Crossref]

I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Intermediate-mode-assisted optical directional couplers via embedded periodic structure,” IEEE J. Quantum Electron. 34, 1772–1781 (1998).
[Crossref]

K. Hosomi and T. Katsuyama, “A dispersion compensator using coupled defects in a photonic crystal,” IEEE J. Quantum Electron. 38, 825–829 (2002).
[Crossref]

IEEE J. Quantum. Electron. (1)

S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, “Coupling between photonic crystal waveguides,” IEEE J. Quantum. Electron. 38, 1349–1352 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Martinez, F. Cuesta, and J. Marti, “Ultrashort 2-D photonic crystal directional couplers,” IEEE Photon. Technol. Lett. 15, 694–696 (2003).
[Crossref]

J. Appl. Phys. (1)

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides on photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

Phys. Rev. Lett. (5)

E. Yablonovitch, “Inhibited spontaneous emission on solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons on certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2488 (1987).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902–1 (2001).
[Crossref] [PubMed]

A. Mekis, J. C. Chen, I Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[Crossref] [PubMed]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in the three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

T. F. Krauss and R. M. De La Rue, “Photonic crystals in the optical regime—past, present and future,” Prog. Quantum Electron. 23, 51–96 (1999).
[Crossref]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals—Molding the Flow of Light (Princeton University Press, Princeton, 1995).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Norwood, MA, Artech, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) The energy band structures of the extended modes and defect modes of two coupled linear PCWs (I and II). The defect modes of the coupled PCWs are split into two eigenmodes, which cross at the point A. (b) The electric field patterns appear as even parity at the points of e1 and e2, and odd parity at o1 and o2. The poor confinement of the electric field at point o2 is a result of being close to the band edge.

Fig. 2.
Fig. 2.

(a) The plot of the coupling length L as the function of frequency. The L varies rapidly near f A=0.432 (L over 75 Λ is not shown). FDTD simulated electric field maps of the coupled PCWs at f A (b) and f B (=0.361) (c) fed into PCW I. The coupling length of f A is well beyond the simulated extent and that of f B is 4.6 Λ. The field intensity in (c) decreases because part of the power flows backward, as discussed in Section 3.

Fig. 3.
Fig. 3.

FDTD simulated electric field maps of coupled PCWs; a bar state for f A (a) and cross state for f B (b), while both forward and backward couplings happen to f B. As the feeding port of PCW II is removed (c), the wave of f B transfers back to PCW I.

Fig. 4.
Fig. 4.

(a) The loop layout applied to the PCW II for eliminating the backward coupling. The coupled forward and backward waves are in phase at the merging point (marked with the red circle). (b) The coupling efficiency decreases, as the waves are not in phase at the merging point. The frequency is f B.

Tables (1)

Tables Icon

Table 1. Output Power Ratios of Demultiplexers*

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = Ω [ 1 + κ cos ( k x Λ ) ] ,

Metrics