Abstract

Accurate polarization mode dispersion (PMD) measurements on modern telecommunication fiber involve significant fiber layout and handling problems. These problems severely limit the quality and quantity of data that can be taken. A new method is proposed for measuring PMD using a large diameter collapsible spool with localized external perturbation (LEP). This method allows the necessary repeated measurements, and virtually eliminates environmental effects, which complicate measurements of low-PMD modern fibers. It is shown that the method produces nearly identical PMD results to a more laborious, conventional method.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L.E. Nelson et al, �??High-capacity, Raman-amplified long-haul transmission and the impact of optical fiber properties ,�?? in Optical Transmission Systems and Equipment for WDM Networking II, B.B. Dingel, W. Weiershausen, A. Dutta and K. Sato eds., Proc. SPIE 5247, 26-39 (2003).
  2. P. Noutsios, M. O�??Sullivan, D. Beckett and S. Corbeil, �??Experimental and theoretical investigations of high PMD impairments on an OC-192 field system,�?? in Proceedings of the 15th National Fiber Optic Engineers Conference, (Telcordia Technologies, Piscataway, NJ, 1999) pp. 1-13.
  3. S.C. Rashleigh, �??Origins and control of polarization effects in single-mode fibers,�?? J. Lightwave Technol. 1, 312- 331 (1983).
    [CrossRef]
  4. R. Neat et al., �??Polarization mode dispersion correlation from optical fibre to cable,�?? EuroCable conference, Stuttgart, June 5-7, 2000.
  5. A. Judy, A. McCurdy, R. Boncek and S. Kakar, �??Fiber PMD �?? Room for improvement,�?? in Proceedings of the 19th National Fiber Optic Engineers Conference, (Telcordia Technologies, Piscataway, NJ, 2003) pp. 1208-1217
  6. H. Kogelnik, L. E. Nelson, and R. M. Jopson, �??Polarization mode dispersion,�?? in Optical fiber telecommunications IVB, I. P. Kaminow and T. Li, eds., (Academic, San Diego, 2002).
  7. N. Gisin, �??Solutions of the dynamical equation for polarization dispersion,�?? Optics Communications 86, 371- 373 (1991).
    [CrossRef]
  8. N. Gisin, B. Gisin, J.P. Von der Weid, and R. Passy, �??How accurately can one measure a statistical quantity like polarization-mode dispersion?,�?? IEEE Photon. Technol. Lett. 8, 1671-1673 (1996).
    [CrossRef]
  9. A. Sengupta and A.H. McCurdy, �??Method for accurately measuring low values of polarization mode dispersion in an optical fiber,�?? U.S. Patent pending, Serial # 10/215,565 (filed 8/8/02), European Patent 03014199.8
  10. C. Poole and D. Favin, �??Polarization-mode dispersion measurements based on transmission spectra through a polarizer,�?? J. Lightwave Technol. 12, 917-929 (1994).
    [CrossRef]
  11. R. Khosravani et al., �??Time and frequency domain characteristics of polarization-mode dispersion emulators,�?? IEEE Photon. Technol. Lett. 13, 127-129 (2001).
    [CrossRef]
  12. IEC Standard 60793-1-48, �??Measurement methods and test procedures �?? polarization mode dispersion,�?? (International Electrotechnical Commission, Geneva, Switzerland 2003).
  13. ANSI/TIA/EIA Standard 455-122-1996, �??Polarization-mode dispersion measurement for single-mode optical fibers by Jones Matrix Eigenanalysis,�?? (Telecommunications Industry Assoc., Arlington, VA 1996).
  14. B.W. Hakki, �??Polarization mode dispersion in a single mode fiber,�?? J. Lightwave Technol. 14, 2202-2208 (1996).
    [CrossRef]
  15. S.A. Jacobs, J.J. Refi, and R.E. Fangmann, �??Statistical estimation of PMD coefficients for system design,�?? Electron. Lett. 33, 619-621 (1997).
    [CrossRef]
  16. M.H. DeGroot, Probability and Statistics (Addison-Wesley, Reading, MA 1975), 227.

19th Natl. Fiber Optics Engin. Conf.

A. Judy, A. McCurdy, R. Boncek and S. Kakar, �??Fiber PMD �?? Room for improvement,�?? in Proceedings of the 19th National Fiber Optic Engineers Conference, (Telcordia Technologies, Piscataway, NJ, 2003) pp. 1208-1217

Electron Lett.

S.A. Jacobs, J.J. Refi, and R.E. Fangmann, �??Statistical estimation of PMD coefficients for system design,�?? Electron. Lett. 33, 619-621 (1997).
[CrossRef]

EuroCable conference 2000

R. Neat et al., �??Polarization mode dispersion correlation from optical fibre to cable,�?? EuroCable conference, Stuttgart, June 5-7, 2000.

IEEE Photon.Technol. Lett.

N. Gisin, B. Gisin, J.P. Von der Weid, and R. Passy, �??How accurately can one measure a statistical quantity like polarization-mode dispersion?,�?? IEEE Photon. Technol. Lett. 8, 1671-1673 (1996).
[CrossRef]

R. Khosravani et al., �??Time and frequency domain characteristics of polarization-mode dispersion emulators,�?? IEEE Photon. Technol. Lett. 13, 127-129 (2001).
[CrossRef]

J. Lightwave Technol

B.W. Hakki, �??Polarization mode dispersion in a single mode fiber,�?? J. Lightwave Technol. 14, 2202-2208 (1996).
[CrossRef]

J. Lightwave Technol.

C. Poole and D. Favin, �??Polarization-mode dispersion measurements based on transmission spectra through a polarizer,�?? J. Lightwave Technol. 12, 917-929 (1994).
[CrossRef]

S.C. Rashleigh, �??Origins and control of polarization effects in single-mode fibers,�?? J. Lightwave Technol. 1, 312- 331 (1983).
[CrossRef]

Optical fiber telecommunications IVB

H. Kogelnik, L. E. Nelson, and R. M. Jopson, �??Polarization mode dispersion,�?? in Optical fiber telecommunications IVB, I. P. Kaminow and T. Li, eds., (Academic, San Diego, 2002).

Optics Communications

N. Gisin, �??Solutions of the dynamical equation for polarization dispersion,�?? Optics Communications 86, 371- 373 (1991).
[CrossRef]

Proc. 15th Natl. Fiber Optic Engin. Conf

P. Noutsios, M. O�??Sullivan, D. Beckett and S. Corbeil, �??Experimental and theoretical investigations of high PMD impairments on an OC-192 field system,�?? in Proceedings of the 15th National Fiber Optic Engineers Conference, (Telcordia Technologies, Piscataway, NJ, 1999) pp. 1-13.

Proc. SPIE

L.E. Nelson et al, �??High-capacity, Raman-amplified long-haul transmission and the impact of optical fiber properties ,�?? in Optical Transmission Systems and Equipment for WDM Networking II, B.B. Dingel, W. Weiershausen, A. Dutta and K. Sato eds., Proc. SPIE 5247, 26-39 (2003).

Other

A. Sengupta and A.H. McCurdy, �??Method for accurately measuring low values of polarization mode dispersion in an optical fiber,�?? U.S. Patent pending, Serial # 10/215,565 (filed 8/8/02), European Patent 03014199.8

IEC Standard 60793-1-48, �??Measurement methods and test procedures �?? polarization mode dispersion,�?? (International Electrotechnical Commission, Geneva, Switzerland 2003).

ANSI/TIA/EIA Standard 455-122-1996, �??Polarization-mode dispersion measurement for single-mode optical fibers by Jones Matrix Eigenanalysis,�?? (Telecommunications Industry Assoc., Arlington, VA 1996).

M.H. DeGroot, Probability and Statistics (Addison-Wesley, Reading, MA 1975), 227.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the collapsible spool and LEP PMD measurement setup. The gray bars retract in the radial direction to allow a zero tension fiber state. The weights, suspended by thin wire, allow controlled point randomization of the fiber birefringence.

Fig. 2.
Fig. 2.

DGD histograms from a 430 m length of MC fiber measured on a 300 mm diameter collapsible spool with 20 weight patterns used. (a) JME DGD measurement for the 20 scans (typical scan highlighted in red shows lack of wavelength variation) (b) Maxwellian distribution fit (blue) to the DGD data from the JME test.

Fig. 3.
Fig. 3.

(a) Comparison between Monte Carlo simulation (black) and approximate c.d.f. corresponding to f CV for N=2. (b) Variation of mean CV with N for µmean=1 fs (diamond), 10 fs (circle), 100 fs (triangle) and 1000 fs (x).

Fig. 4.
Fig. 4.

LEP PMD measurements on 450 m length MC fibers using 10 or 20 LEP weight patterns.

Fig. 5.
Fig. 5.

PMD measurements comparing LEP-LMC with floor-LMC (blue square) and multiple rewind (blue circle) on a 300 mm diameter collapsible spool with 10 weight patterns used. The weight configurations are: 1-weight set (blue diamond), 2-weight set (green square) 3-weights (red triangle). Comparison of (a) PMD and (b) coefficient of variation, CV, for the various measurement configurations.

Fig. 6.
Fig. 6.

LEP collapsible spool PMD measurement (red) on NZDF fiber compared to measurement on the floor (reference line in green). The same fibers measured on a 160 mm diameter shipping spool under 35 gram winding tension (blue).

Fig. 7.
Fig. 7.

(a) LEP-LMC measurement (red squares) on MC fiber compared with floor-LMC. Blue diamonds show 160 mm diameter spool result. (b) LEP results using larger diameter spools (the bend diameter for the floor-LMC loop is roughly 200 m.

Fig. 8.
Fig. 8.

Splice and spin PMD measurements compared to floor-LMC.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U 1 / ( Δ τ Δ ω )
f ( x ; α , β ) = 2 β α x 2 α 1 Γ ( α ) e β x 2 ,
with mean μ = 1 β Γ ( α + 1 / 2 ) Γ ( α ) and standard deviation σ = α / β μ 2 .
α mean 0.14 N + 0.1 and β mean ( 0.14 N 0.14 ) / μ mean ( ps ) 2
α CV 0.52 N 0.49 and β CV ( 2.9 N 3.0 ) .

Metrics