Abstract

Straight single-line-defect photonic crystal (PC) waveguides on GaAs slabs with lengths of 1, 4, and 10 mm have been fabricated. By controlling the Al content of a sacrificial AlGaAs clad layer and the wet etching duration, a PC core layer with a very smooth surface was obtained. Atomic force microscope images indicate that the roughness on the top surface is less than 1 nm. An extremely low propagation loss of 0.76 dB/mm for the GaAs-based PC waveguide was achieved.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Lon�?ar, D. Nedeljkokovi�?, T. Doll, J. V�?kovi�?, A. Scherer, and T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937-19939, (2000).
    [CrossRef]
  2. C. J. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdre, and U. Oesterle, �??Low-loss channel waveguides with two-dimensional photonic crystal boundaries,�?? Appl. Phys. Lett. 77, 2813-2815, (2000).
    [CrossRef]
  3. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le. Vassor d�??Yerville, D. Cassagne, and C. Jouanin, �??Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,�?? Appl. Phys. Lett. 79, 2312-2314, (2001).
    [CrossRef]
  4. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, �??Theoretical and experimental investigation of straight defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,�?? Appl. Phys. Lett. 79, 4286-4288, (2001).
    [CrossRef]
  5. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokoyama, �??Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,�?? Electron. Lett. 37, 293-295, (2001).
    [CrossRef]
  6. J. Arentoft, T. Sondergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. Frandsen, �??Low-loss silicon-on-insulator photonic crystal waveguides,�?? Electron. Lett. 38, 274-275, (2002).
    [CrossRef]
  7. T. Baba, N. Fukaya, and A. Motegi, �??Clear correspondence between theoretical and experimental light propagation characteristics in photonic crystal waveguides,�?? Electron. Lett. 37, 118-119, (2001).
    [CrossRef]
  8. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927</a>
    [CrossRef] [PubMed]
  9. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, �??Fabrication and Characterization of different types of two-dimensional AlGaAs photonic crystal slabs,�?? J. Appl. Phys., 91, 922-929, (2002).
    [CrossRef]

Appl. Phys. Lett.

M. Lon�?ar, D. Nedeljkokovi�?, T. Doll, J. V�?kovi�?, A. Scherer, and T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937-19939, (2000).
[CrossRef]

C. J. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdre, and U. Oesterle, �??Low-loss channel waveguides with two-dimensional photonic crystal boundaries,�?? Appl. Phys. Lett. 77, 2813-2815, (2000).
[CrossRef]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le. Vassor d�??Yerville, D. Cassagne, and C. Jouanin, �??Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,�?? Appl. Phys. Lett. 79, 2312-2314, (2001).
[CrossRef]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, �??Theoretical and experimental investigation of straight defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,�?? Appl. Phys. Lett. 79, 4286-4288, (2001).
[CrossRef]

Electron. Lett.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokoyama, �??Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,�?? Electron. Lett. 37, 293-295, (2001).
[CrossRef]

J. Arentoft, T. Sondergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. Frandsen, �??Low-loss silicon-on-insulator photonic crystal waveguides,�?? Electron. Lett. 38, 274-275, (2002).
[CrossRef]

T. Baba, N. Fukaya, and A. Motegi, �??Clear correspondence between theoretical and experimental light propagation characteristics in photonic crystal waveguides,�?? Electron. Lett. 37, 118-119, (2001).
[CrossRef]

J. Appl. Phys.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, �??Fabrication and Characterization of different types of two-dimensional AlGaAs photonic crystal slabs,�?? J. Appl. Phys., 91, 922-929, (2002).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagrams and SEM photographs of the cleaved edges of a sample viewed from several angles: (a) schematic diagram of an air-bridge structure, (b) and (c) SEM photographs viewed at different scales, (d) schematic diagram of the core layer, (e) and (f) SEM photographs viewed from above and below, respectively.

Fig. 2.
Fig. 2.

An AFM image (a) and a surface-roughness profile (b), obtained with the AFM probe line-scanned along the white line indicated in (a). The results indicate that the surface roughness is less than 1 nm.

Fig. 3.
Fig. 3.

(a) Calculated band structure of the present line-defect PC slab waveguide (an air-bridge type GaAs-based PC waveguide). The energy is given by a/λ with a and λ being the lattice constant and wavelength in vacuum, respectively; k is the wave vector. (b) Transmission spectra of the PC waveguides with different lengths. The spectra were plotted in such a way that each center wavelength was adjusted to 1279 nm, that of the shortest sample.

Fig. 4.
Fig. 4.

(a) Transmission spectra of four identical samples for different waveguide lengths. Note that the spectra, in particular, those for 4- and 10-mm-long samples, are very similar. (b) Plot of the observed transmittances at the center wavelengths in Fig. 4(a) as a function of sample length. An extremely low propagation loss of 0.76 dB/mm is achieved.

Metrics