Abstract

We demonstrate supercontinuum generation in a highly nonlinear photonic crystal fiber with two closely lying zero dispersion wavelengths. The special dispersion of the fiber has a profound influence on the supercontinuum which is generated through self-phase modulation and phasematched four-wave mixing and not soliton fission as in the initial photonic crystal fibers. The supercontinuum has high spectral density and is extremely independent of the input pulse over a wide range of input pulse parameters. Simulations show that the supercontinuum can be compressed to ultrashort pulses.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. S. J. Russell, �??Photonic Crystal Fibers,�?? Science 299, 358�??362 (2003).
    [CrossRef] [PubMed]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25�??27 (2000).
    [CrossRef]
  3. S. T. Cundiff and J. Ye, �??Femtosecond optical frequency combs,�?? Rev. Mod. Phys. 75, 325�??342 (2003).
    [CrossRef]
  4. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, �??Coherent anti-Stokes Raman microscopy with a photonic crystal fiber based light source,�?? Opt. Lett. 28, 1123�??1125 (2003).
    [CrossRef] [PubMed]
  5. V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, �??A compact versatile femtosecond spectrometer,�?? Rev. Sci. Instrum. 73, 4145�??4149 (2002).
    [CrossRef]
  6. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructured optical fiber,�?? Opt. Lett. 26, 608�??610 (2001).
    [CrossRef]
  7. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, �??2R regenerative alloptical switch based on a highly nonlinear holey fiber,�?? Opt. Lett. 26, 1233�??1235 (2001).
    [CrossRef]
  8. A. V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  9. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, �??Experimental studies of the coherence of microstructure-fiber supercontinuum,�?? Opt. Express 11, 2697�??2703 (2003); <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2697">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2697</a.
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  11. S. Diddams and J.-C. Diels, �??Dispersion measurements with white-light interferometry,�?? J. Opt. Soc. Am. B 13, 1120 (1996).
    [CrossRef]
  12. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765�??771 (2002).
    [CrossRef]
  13. K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, �??Initial steps of supercontinuum generation in photonic crystal fibers,�?? J. Opt. Soc. Am. B 20, 1887�??1893 (2003).
    [CrossRef]
  14. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, �??Experimental Evidence for Supercontinuum Generation by Fission of Higher-order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  15. A. V. Husakou and J. Herrmann, �??Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,�?? Appl. Phys. B 77, 227�??234 (2003).
    [CrossRef]
  16. K. L. Corwin and N. R. Newbury and J. M. Dudley and S. Coen and S. A. Diddams and B. R. Washburn and K. Weber and R. S. Windeler, �??Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,�?? Appl. Phys. B. 77, 269�??277 (2003).
    [CrossRef]
  17. V. P. Yanovsky and F.W.Wise, �??Nonlinear propagation of high-power, sub-100-fs pulses near the zero-dispersion wavelength of an optical fiber,�?? Opt. Lett. 19, 1547�??1549 (1994).
    [CrossRef] [PubMed]
  18. B. Hall and D. Anderson and M. Lisak and G. Boyer and M. Karlsson and A. Berntson, �??Pump-probe collision in the optical fibers: four-wave-mixing induced frequency jump,�?? J. Opt. Soc. Am. B 18, 1652�??1658 (2001).
    [CrossRef]
  19. J. Squier and M. Müller, �??High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,�?? Rev. Sci. Instrum. 72, 2855�??2867 (2001).
    [CrossRef]

Appl. Phys. B

A. V. Husakou and J. Herrmann, �??Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,�?? Appl. Phys. B 77, 227�??234 (2003).
[CrossRef]

Appl. Phys. B.

K. L. Corwin and N. R. Newbury and J. M. Dudley and S. Coen and S. A. Diddams and B. R. Washburn and K. Weber and R. S. Windeler, �??Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,�?? Appl. Phys. B. 77, 269�??277 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, �??Experimental Evidence for Supercontinuum Generation by Fission of Higher-order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys.

S. T. Cundiff and J. Ye, �??Femtosecond optical frequency combs,�?? Rev. Mod. Phys. 75, 325�??342 (2003).
[CrossRef]

Rev. Sci. Instrum.

V. Nagarajan, E. Johnson, P. Schellenberg, W. Parson, and R. Windeler, �??A compact versatile femtosecond spectrometer,�?? Rev. Sci. Instrum. 73, 4145�??4149 (2002).
[CrossRef]

J. Squier and M. Müller, �??High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,�?? Rev. Sci. Instrum. 72, 2855�??2867 (2001).
[CrossRef]

Science

P. S. J. Russell, �??Photonic Crystal Fibers,�?? Science 299, 358�??362 (2003).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Supplementary Material (1)

» Media 1: MPG (381 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A scanning electron micrograph image of the central region of the fiber cross section.

Fig. 2.
Fig. 2.

(a) Dispersion properties of the photonic crystal fiber with zero dispersion at 780 nm and 945 nm. (b) Phase-matching curves for four-wave mixing in the fiber. Full curve: phase-matching without power-dependent term. Dashed curve: phase-matching with an input power of 300 W.

Fig. 3.
Fig. 3.

(a) Experimental measurement of output spectra versus pulse energy for a 40 fs input pulse centered at 790 nm. (b) Theoretical simulation of the spectral evolution.

Fig. 4.
Fig. 4.

(a) Experimentally recorded output spectra 40 fs, λ0=790 nm (black), 40 fs, λ0=810 nm (red) and a 40 fs, λ0=790 nm chirped to ~80 fs (blue). The pulse energy is 700 pJ for all pulses. (b) Simulated spectra for λ0=790 nm (black), λ0=700 nm (red) and λ0=1000 nm (blue). For all pulses the energy is 700 pJ and they are 40 fs long. (c) Simulated spectra for 40 fs, 700 pJ (black), 20 fs, 350 pJ (red) and 160 fs, 2800 pJ (blue). For all pulses λ0=790 nm. (d) Simulated spectra for an unchirped 40 fs pulse (black), upchirped to 80 fs (red) and downchirped to 80 fs (blue) pulses. For all pulses the energy is 700 pJ, λ0=790 nm.

Fig. 5.
Fig. 5.

(a)-(f) Calculated spectrograms after propagation of (a) 0 cm, (b) 0.2 cm, (c) 0.5 cm, (d) 1 cm, (e) 2 cm and (f) 5 cm in the fiber for a 40 fs input pulse at 790 nm with a pulse energy of 700 pJ. The continuous development of the spectrogram during the 5 cm of propagation is illustrated in the corresponding movie “moviefig5.mpg” (size 0.4MB).

Fig. 6.
Fig. 6.

Spectrum (black) and phase (red) of the pulse after 5 cm for the 40 fs input pulse at 790 nm with a pulse energy of 700 pJ (also pictured in Fig. 5(f)). The phase of the pulse is well behaved and the visible peak in the spectrum can sustain a sub-10 fs pulse with λ0=640 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β 2 ( ω ) = d 2 β ( ω ) d ω 2 .
Δ ω = ω S + ω I 2 ω P = 0 ,
Δ k = β ( ω S ) + β ( ω I ) 2 β ( ω P ) + Δ k NL = 0 .
d A ( z , t ) dz = D ̂ A ( z , t ) + i γ ( 1 + i ω 0 t ) ( A ( z , t ) d t R ( t ) A ( z , t t ) 2 ) ,
S ( z , t , ω ) = d t e i ω t e ( t t ) 2 α 2 A ( z , t ) ,

Metrics