Abstract

We report on a simple technique to measure the anomalous dispersion of small-core microstructured fibers using short optical pulses. The method relies on the spectral modulation resulting from the evolution of the input pulse into a propagating soliton wave. The technique allows for a direct measurement of the dispersion at the desired wavelength from a single pulse. The measurement error is estimated to be less than 10%.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
    [Crossref]
  2. S. Diddams and J. C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129 (1996).
    [Crossref]
  3. L. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14, 855–859 (1978).
    [Crossref]
  4. B. Costa, D. Mazzoni, M. Puelo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
    [Crossref]
  5. M. Wegmuller, F. Scholder, A. Fougeres, N. Gisin, T. Niemi, G. Genty, H. Ludvigsen, and O. Deparis, “Evaluation of measurement techniques for characterization of photonic crystal fibers,” in Technical Digest. of Conference on Lasers and Electro-Optics (2002) pp. 617.
  6. Q. H. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry,” Appl. Optics 41, 4467–4470 (2002).
    [Crossref]
  7. D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
    [Crossref]
  8. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63–64 (1999).
    [Crossref]
  9. M. W. Chbat, P. R. Prucnal, M. N. Islam, C. E. Soccolich, and J. P. Gordon, “Long-Range Interference Effects of Soliton Reshaping in Optical Fibers,” J. Opt. Soc. Am. B 10, 1386–1395 (1993).
    [Crossref]
  10. N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
    [Crossref]
  11. D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
    [Crossref] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press San Diego2001).
  13. J. Satsuma and N. Yajima, “Initial value problems of one-dimensional selfmodulation of nonlinear waves in dispersive media,” Suppl. Prog. Theo. Phys. 55, 284–306 (1974).
    [Crossref]

2002 (1)

Q. H. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry,” Appl. Optics 41, 4467–4470 (2002).
[Crossref]

2001 (1)

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[Crossref]

1999 (1)

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63–64 (1999).
[Crossref]

1996 (1)

1993 (1)

1992 (2)

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[Crossref]

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
[Crossref] [PubMed]

1985 (1)

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[Crossref]

1982 (1)

B. Costa, D. Mazzoni, M. Puelo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

1978 (1)

L. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14, 855–859 (1978).
[Crossref]

1974 (1)

J. Satsuma and N. Yajima, “Initial value problems of one-dimensional selfmodulation of nonlinear waves in dispersive media,” Suppl. Prog. Theo. Phys. 55, 284–306 (1974).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press San Diego2001).

Andonovic, I.

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[Crossref]

Birks, T. A.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63–64 (1999).
[Crossref]

Blow, K. J.

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[Crossref]

Chbat, M. W.

Cohen, L.

L. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14, 855–859 (1978).
[Crossref]

Cohen, L. G.

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[Crossref]

Costa, B.

B. Costa, D. Mazzoni, M. Puelo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

Deparis, O.

M. Wegmuller, F. Scholder, A. Fougeres, N. Gisin, T. Niemi, G. Genty, H. Ludvigsen, and O. Deparis, “Evaluation of measurement techniques for characterization of photonic crystal fibers,” in Technical Digest. of Conference on Lasers and Electro-Optics (2002) pp. 617.

Diddams, S.

Diels, J. C.

Eggleton, B.

Q. H. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry,” Appl. Optics 41, 4467–4470 (2002).
[Crossref]

Fajardo, J. C.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[Crossref]

Fougeres, A.

M. Wegmuller, F. Scholder, A. Fougeres, N. Gisin, T. Niemi, G. Genty, H. Ludvigsen, and O. Deparis, “Evaluation of measurement techniques for characterization of photonic crystal fibers,” in Technical Digest. of Conference on Lasers and Electro-Optics (2002) pp. 617.

Gaeta, A. L.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[Crossref]

Gander, M. J.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63–64 (1999).
[Crossref]

Genty, G.

M. Wegmuller, F. Scholder, A. Fougeres, N. Gisin, T. Niemi, G. Genty, H. Ludvigsen, and O. Deparis, “Evaluation of measurement techniques for characterization of photonic crystal fibers,” in Technical Digest. of Conference on Lasers and Electro-Optics (2002) pp. 617.

Gisin, N.

M. Wegmuller, F. Scholder, A. Fougeres, N. Gisin, T. Niemi, G. Genty, H. Ludvigsen, and O. Deparis, “Evaluation of measurement techniques for characterization of photonic crystal fibers,” in Technical Digest. of Conference on Lasers and Electro-Optics (2002) pp. 617.

Gordon, J. P.

Homoelle, D.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[Crossref]

Islam, M. N.

Jones, J. D. C.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63–64 (1999).
[Crossref]

Knight, J. C.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63–64 (1999).
[Crossref]

Knox, W. H.

Q. H. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry,” Appl. Optics 41, 4467–4470 (2002).
[Crossref]

Koch, K. W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[Crossref]

Lin, C.

L. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14, 855–859 (1978).
[Crossref]

Liu, X.

Q. H. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry,” Appl. Optics 41, 4467–4470 (2002).
[Crossref]

Ludvigsen, H.

M. Wegmuller, F. Scholder, A. Fougeres, N. Gisin, T. Niemi, G. Genty, H. Ludvigsen, and O. Deparis, “Evaluation of measurement techniques for characterization of photonic crystal fibers,” in Technical Digest. of Conference on Lasers and Electro-Optics (2002) pp. 617.

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puelo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

McBride, R.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63–64 (1999).
[Crossref]

Mogilevtsev, D.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63–64 (1999).
[Crossref]

Niemi, T.

M. Wegmuller, F. Scholder, A. Fougeres, N. Gisin, T. Niemi, G. Genty, H. Ludvigsen, and O. Deparis, “Evaluation of measurement techniques for characterization of photonic crystal fibers,” in Technical Digest. of Conference on Lasers and Electro-Optics (2002) pp. 617.

Noske, D. U.

Ouzounov, D.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[Crossref]

Pandit, N.

Prucnal, P. R.

Puelo, M.

B. Costa, D. Mazzoni, M. Puelo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

Russell, P. S.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63–64 (1999).
[Crossref]

Satsuma, J.

J. Satsuma and N. Yajima, “Initial value problems of one-dimensional selfmodulation of nonlinear waves in dispersive media,” Suppl. Prog. Theo. Phys. 55, 284–306 (1974).
[Crossref]

Scholder, F.

M. Wegmuller, F. Scholder, A. Fougeres, N. Gisin, T. Niemi, G. Genty, H. Ludvigsen, and O. Deparis, “Evaluation of measurement techniques for characterization of photonic crystal fibers,” in Technical Digest. of Conference on Lasers and Electro-Optics (2002) pp. 617.

Smith, N. J.

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[Crossref]

Soccolich, C. E.

Taylor, J. R.

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puelo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

Webb, W. W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[Crossref]

Wegmuller, M.

M. Wegmuller, F. Scholder, A. Fougeres, N. Gisin, T. Niemi, G. Genty, H. Ludvigsen, and O. Deparis, “Evaluation of measurement techniques for characterization of photonic crystal fibers,” in Technical Digest. of Conference on Lasers and Electro-Optics (2002) pp. 617.

West, J. A.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[Crossref]

Windeler, R. S.

Q. H. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry,” Appl. Optics 41, 4467–4470 (2002).
[Crossref]

Xu, C.

Q. H. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry,” Appl. Optics 41, 4467–4470 (2002).
[Crossref]

Yajima, N.

J. Satsuma and N. Yajima, “Initial value problems of one-dimensional selfmodulation of nonlinear waves in dispersive media,” Suppl. Prog. Theo. Phys. 55, 284–306 (1974).
[Crossref]

Yan, M. F.

Q. H. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry,” Appl. Optics 41, 4467–4470 (2002).
[Crossref]

Ye, Q. H.

Q. H. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry,” Appl. Optics 41, 4467–4470 (2002).
[Crossref]

Zipfel, W.

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[Crossref]

Appl. Optics (1)

Q. H. Ye, C. Xu, X. Liu, W. H. Knox, M. F. Yan, R. S. Windeler, and B. Eggleton, “Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry,” Appl. Optics 41, 4467–4470 (2002).
[Crossref]

Electron. Lett. (1)

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35, 63–64 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

L. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14, 855–859 (1978).
[Crossref]

B. Costa, D. Mazzoni, M. Puelo, and E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE J. Quantum Electron. 18, 1509–1515 (1982).
[Crossref]

J. Lightwave Technol. (2)

L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[Crossref]

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun. 192, 219–223 (2001).
[Crossref]

Opt. Lett. (1)

Suppl. Prog. Theo. Phys. (1)

J. Satsuma and N. Yajima, “Initial value problems of one-dimensional selfmodulation of nonlinear waves in dispersive media,” Suppl. Prog. Theo. Phys. 55, 284–306 (1974).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press San Diego2001).

M. Wegmuller, F. Scholder, A. Fougeres, N. Gisin, T. Niemi, G. Genty, H. Ludvigsen, and O. Deparis, “Evaluation of measurement techniques for characterization of photonic crystal fibers,” in Technical Digest. of Conference on Lasers and Electro-Optics (2002) pp. 617.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Measured dispersion values for the highly-birefringent MF. The red squares and blue triangles represent the values obtained using the spectral modulation technique. The solid line indicates the measurement results obtained with white-light interferometry. Inset: typical spectrum recorded at the fiber output.

Fig. 2.
Fig. 2.

Experimental spectra recorded at the output of the small-core MF for increasing input power from bottom to top. For clarity, an arbitrary vertical offset has been added to each curve. The peak power of the input pulses is of the order of a few watts.

Fig. 3.
Fig. 3.

Measured dispersion values for the 1-µm core MF.

Fig. 4.
Fig. 4.

Simulated spectrum at the output of a 2-m long MF for various ε-values. For clarity, an arbitrary vertical offset has been added to each curve.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i U ξ + 1 2 2 U τ 2 + N 2 U 2 U = 0 ,
ϕ ( ε , z , λ ) = 4 π 2 c 2 T 0 2 ( 1 λ 1 λ 0 ) 2 + ( 1 + 2 ε ) 2 2 · L T 0 2 β 2 + 2 tan 1 ( 2 π c T 0 1 λ 1 λ 0 1 + 2 ε ) ,
D ( λ ) = 2 π c λ 2 β 2 2 c L · 10 6 ( λ 0 λ 2 1 ) 2 ( λ 0 λ 1 1 ) 2 [ ps nm · km ] ,

Metrics