Abstract

We experimentally and theoretically investigated the optical switching characteristics of bacteriorhodopsin (bR) at λ=633 nm using the pump-probe method. A diode-pumped second harmonic YAG laser (λ=532 nm which is located around the maximum initial Br state absorption) was used as a pumping beam and a cw He-Ne laser (λ=633 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we have demonstrated an all-optical device functioning as 11 kinds of variable binary all-optical logic gates.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Chun, W. J. Joo, N. J. Kim, I. K. Moon, N. Kim , �??Applications of polymeric photorefractive material to reversible data storage and information processing,�?? J. Appl. Poly. Sci. 89, 368-372 (2003).
    [CrossRef]
  2. J. A. Stuart, D. L. Mercy, K. J. Wise, �??Volumetric optical memory based on bacteriorhodopsin,�?? R. R. Birge, Synth. Metals 127, 3-15 (2002)
    [CrossRef]
  3. S. Roy, C. P. Singh, K. P. J. Peddy, �??Analysis of spatial light modulation characteristics of C60,�?? Appl. Phys. Lett. 77, 2656-2658 (2000).
    [CrossRef]
  4. K. Clays, S. V. Elshocht, and A. Persoons, �??Bacteriorhodopsin: a natural nonlinear photonic bandgap material,�?? Opt. Lett. 25, 1391-1393 (2000).
    [CrossRef]
  5. P. Bhattacharya, J. Xu, G. Váró, D. L. Marcy and R. R. Birge, �??Monolithically integrated bacteriorhodopsin Ga-As field-effect transistor photoreceiver,�?? Opt. Lett. 27 839-841 (2002).
    [CrossRef]
  6. D. Oesterhelt and W. Stoeckenius, Nature (London) 233, (1971) 149
  7. R. R. Birge, �??Photophysics of light transduction in rhodopsin and bacteriorhodopsin,�?? Annul Rev. Biophy. Bioeng., 10, 315-354 (1981).
    [CrossRef]
  8. Q. W. Song, C. P. Zhang, R. Gross, R. Birge, �??Optical limiting by chemically enhanced bacteriorhodopsin films,�?? Opt. Lett. 18, 775-777 (1993).
    [CrossRef] [PubMed]
  9. F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, �??All-optical light modulation in bacteriorhodopsin films,�?? Appl. Phys. Lett. 67, 599-601 (1995).
    [CrossRef]
  10. P. Ormos, L. Fábián, L. Oroszi, E. K .Wolff, J. J. Ramsden, and A. Dér, �??Protein-based integrated optical switching and modulation,�?? Appl. Phys. Lett. 80, 4060-4062 (2002).
    [CrossRef]
  11. Joseph, F. J. Aranda, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, �??Optical implementation of the wavelet transform by using a bacteriorhodopsin film as an optically addressed spatial light modulator,�?? Appl. Phys. Lett. 73, 1484-1486 (1998).
    [CrossRef]
  12. Y. H. Zhang, Q. W. Song, C. Tseronis, R. R. Birge, �??Real-time holographic imaging with a bacteriorhodopsin film,�?? Opt. Lett., 20, 2429-2431 (1995).
    [CrossRef] [PubMed]
  13. D. V. G. L. N. Rao, F. J. Aranda, D. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, M. Nakashima, �??All-optical logic gates with bacteriorhodopsin films,�??Opt. Commun. 127, 193-199 (1996).
    [CrossRef]
  14. T. Zhang, C. Zhang, G. Fu, G. Zhang, Y. Li, Q. W. Song, B. Parsons, R. R. Birge,�?? All-optical logic gates using bacteriorhodopsin films,�?? Opt. Eng. 39, 527-534 (2000).
    [CrossRef]
  15. L. Q. Gu, C. P. Zhang, A. F. Niu, J. Li, G. Y. Zhang, Y. M. Wang, M. R. Tong, J. L. Pan, Q. W. Song, B. Parsons and R. R. Birge, �??Bacteriorhodopsin based photonic logic gate and its applications to grey level image subtraction,�?? Opt. Commun. 131, 25-30 (1996).
    [CrossRef]
  16. C. P. Singh and S. Roy, �??All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates,�?? Opt. Commun. 218, 55-66 (2003)
    [CrossRef]

Annul Rev. Biophy. Bioeng.,

R. R. Birge, �??Photophysics of light transduction in rhodopsin and bacteriorhodopsin,�?? Annul Rev. Biophy. Bioeng., 10, 315-354 (1981).
[CrossRef]

Appl. Phys. Lett.

S. Roy, C. P. Singh, K. P. J. Peddy, �??Analysis of spatial light modulation characteristics of C60,�?? Appl. Phys. Lett. 77, 2656-2658 (2000).
[CrossRef]

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, �??All-optical light modulation in bacteriorhodopsin films,�?? Appl. Phys. Lett. 67, 599-601 (1995).
[CrossRef]

P. Ormos, L. Fábián, L. Oroszi, E. K .Wolff, J. J. Ramsden, and A. Dér, �??Protein-based integrated optical switching and modulation,�?? Appl. Phys. Lett. 80, 4060-4062 (2002).
[CrossRef]

Joseph, F. J. Aranda, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, �??Optical implementation of the wavelet transform by using a bacteriorhodopsin film as an optically addressed spatial light modulator,�?? Appl. Phys. Lett. 73, 1484-1486 (1998).
[CrossRef]

J. Appl. Poly. Sci.

H. Chun, W. J. Joo, N. J. Kim, I. K. Moon, N. Kim , �??Applications of polymeric photorefractive material to reversible data storage and information processing,�?? J. Appl. Poly. Sci. 89, 368-372 (2003).
[CrossRef]

Opt. Commun.

D. V. G. L. N. Rao, F. J. Aranda, D. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, M. Nakashima, �??All-optical logic gates with bacteriorhodopsin films,�??Opt. Commun. 127, 193-199 (1996).
[CrossRef]

L. Q. Gu, C. P. Zhang, A. F. Niu, J. Li, G. Y. Zhang, Y. M. Wang, M. R. Tong, J. L. Pan, Q. W. Song, B. Parsons and R. R. Birge, �??Bacteriorhodopsin based photonic logic gate and its applications to grey level image subtraction,�?? Opt. Commun. 131, 25-30 (1996).
[CrossRef]

C. P. Singh and S. Roy, �??All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates,�?? Opt. Commun. 218, 55-66 (2003)
[CrossRef]

Opt. Eng.

T. Zhang, C. Zhang, G. Fu, G. Zhang, Y. Li, Q. W. Song, B. Parsons, R. R. Birge,�?? All-optical logic gates using bacteriorhodopsin films,�?? Opt. Eng. 39, 527-534 (2000).
[CrossRef]

Opt. Lett.

Q. W. Song, C. P. Zhang, R. Gross, R. Birge, �??Optical limiting by chemically enhanced bacteriorhodopsin films,�?? Opt. Lett. 18, 775-777 (1993).
[CrossRef] [PubMed]

K. Clays, S. V. Elshocht, and A. Persoons, �??Bacteriorhodopsin: a natural nonlinear photonic bandgap material,�?? Opt. Lett. 25, 1391-1393 (2000).
[CrossRef]

P. Bhattacharya, J. Xu, G. Váró, D. L. Marcy and R. R. Birge, �??Monolithically integrated bacteriorhodopsin Ga-As field-effect transistor photoreceiver,�?? Opt. Lett. 27 839-841 (2002).
[CrossRef]

Opt. Lett.,

Y. H. Zhang, Q. W. Song, C. Tseronis, R. R. Birge, �??Real-time holographic imaging with a bacteriorhodopsin film,�?? Opt. Lett., 20, 2429-2431 (1995).
[CrossRef] [PubMed]

R. R. Birge, Synth. Metals

J. A. Stuart, D. L. Mercy, K. J. Wise, �??Volumetric optical memory based on bacteriorhodopsin,�?? R. R. Birge, Synth. Metals 127, 3-15 (2002)
[CrossRef]

Other

D. Oesterhelt and W. Stoeckenius, Nature (London) 233, (1971) 149

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Major photocycle of the bR molecules.

Fig. 2.
Fig. 2.

The operating principles of a double binary variable logic gate.

Fig. 3.
Fig. 3.

Experimental setup for studying the optical switching characteristics of bR film. ND is the neutral density filter, and L1 and L2 are lenses.

Fig. 4.
Fig. 4.

(a) The normalized pump beam intensity at λ=532 nm, (b) and (c) are the transmitted probe beam intensity when the probe beam intensity is 3.1 mW/mm2 and 310 mW/mm2.

Fig. 5.
Fig. 5.

Transient behavior of the probing beam under different pumping pulse width: (a) 0.3 s and (b) 8 s. Pumping beam (top; λ=532 nm) intensity I=56 mW/mm2 and probing beam (bottom trace; λ=633 nm) I=31 mW/mm2.

Fig. 6.
Fig. 6.

Simplified level diagram representing the photocycle of bR molecules.

Fig. 7.
Fig. 7.

Variation of the normalized population density of B, K, L, M, N and O states and the corresponding normalized transmitted intensity of the probe beam at λ=633 nm when the probe intensity is: (a) 3.1 mW/mm2, (b) 310 mW/mm2. The intensity of the pump beam at λ=532 nm is 56 mW/mm2 (dashed line).

Fig. 8.
Fig. 8.

Variation of the normalized population density of B, K, L, M, N and O states and the corresponding normalized transmitted intensity of the probe beam at λ=633 nm when the pump time is: (a) 0.3 s, (b) 8s. The intensity of the pumping beam at λ=532 nm is 56 mW/mm2 (dashed line).

Fig. 9.
Fig. 9.

Experimental setup for demonstrating an all-optical logic gate.

Fig. 10.
Fig. 10.

All-optical logic gate: (a) optical 0 gate function, (b) optical 1 gate function (dashed line as the threshold level), both with unchanged normalized transmitted intensity of the probe beam at λ=633 nm as output with time; (c) and (d) are normalized profiles of the two inputs A and B. The intensity of the He-Ne probing beam is 3.1 mW/mm2, and the intensity of the two inputs is 0.56 mW/mm2.

Fig. 11.
Fig. 11.

All-optical logic gate: (a) optical OR gate function, (b) optical AND gate function (dashed line as the threshold level), both with variation of normalized transmitted intensity of the probe beam at λ=633 nm as output with time; (c) and (d) are normalized profiles of the two inputs A and B. The intensity of the He-Ne probing beam is 3.1 mW/mm2, and the intensity of the two inputs is 56 mW/mm2.

Fig. 12.
Fig. 12.

All-optical logic gate: (a) optical A/B gate function (dashed line as the threshold level), (b) and (c) are normalized profiles of the two inputs A and B. The intensity of the He-Ne probing beam is 3.1mW/mm2, and the intensity of the inputs A and B is 0.56 mW/mm2 and 56 mW/mm2.

Fig. 13.
Fig. 13.

All-optical logic gate: (a) optical NOR gate function (dashed line as the threshold level), both with variation of normalized transmitted intensity of the probe beam at 633 nm as output with time; (b) and (c) are normalized profiles of the two inputs A and B. The intensity of the He-Ne probing beam is 310 mW/mm2, and the intensity of the two inputs is 56 mW/mm2.

Fig. 14.
Fig. 14.

All-optical logic gate: (a) optical NA/NB gate function (dashed line as the threshold level); (c) and (d) are normalized profiles of the two inputs A and B. The intensity of the He-Ne probing beam is 310 mW/mm2, and the intensity of the inputs A and B is 0.56 mW/mm2 and 56 mW/mm2, respectively.

Fig. 15.
Fig. 15.

All-optical logic gate: (a) a combinational logic function as in (c) (dashed line as the threshold level); (b) is normalized profile of the input; (c) a combinational logic gate, TL is a leading edge-triggered flip-flop, D is time-delay device. The intensity of the probing He-Ne laser beam is 31 mW/mm2, and the intensity of the inputs is 56 mW/mm2.

Fig. 16.
Fig. 16.

All-optical logic gate: (a) a combinational logic function as in (c) (dashed line as the threshold level); (b) is normalized profile of the input; (c) a combinational logic gate, TL is a leading edge-triggered flip-flop, TF is a falling edge-triggered flip-flop, D is time-delay device. The intensity of the probing beam is 31mW/mm2, and the intensity of the inputs is 56 mW/mm2

Tables (1)

Tables Icon

Table 1. The rate constants and absorption cross-sections used in our simulations.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d N B dt = ( σ BC I C + σ BP I P ) N B + K JB N J + ( K iGB N iG + K iEB N iE )
d N J dt = ( σ BC I c + σ BP I P ) N B ( K JB + K JK ) N J
d N KG dt = K JK N J ( σ KC I C + σ KP I P + K KGB + K KGL ) N KG
d N KE dt = ( σ KC I C + σ KP I P ) N KG K KEB N KE
d N LG dt = K KGL N KG ( σ LC I C + σ LP I P + K LGB + K LGM ) N LG
d N LE dt = ( σ LC I C + σ LP I P ) N LG K LEB N LE
d N MG dt = K LGM N LG ( σ MC I C + σ MP I P + K MGB + K MGN ) N MG
d N ME dt = ( σ MC I C + σ MP I P ) N MG K MEB N ME
d N NG dt = K MGN N MG ( σ NC I C + σ NP I P + K NGB + K NGO ) N NG
d N NE dt = ( σ NC I C + σ NP I P ) N NG K NEB N NE
d N OG dt = K NGO N NG ( σ OC I C + σ OP I P + K OGB ) N OG
d N OE dt = ( σ OC I C + σ OP I P ) N OG K OEB N OE
d I C dz = α I C
α = N B σ BC + N K σ KC + N L σ LC + N M σ MC + N N σ NC + N O σ OC

Metrics