Abstract

Design and demonstration of a versatile liquid crystal-based scanner is shown for steering a laser beam in three dimensions. The scanner consists of a unique combination of digital and analog control polarization-based beamforming optics resulting in both continuous and random fashion beam steering. The design features a novel device biasing method, large aperture beamforming optics, low electrical power consumption, and ultra-fine as well as wide angle coarse beam steering. Demonstrations include one, two and three dimensional beam steering with a maximum of 40.92° continuous scan, all at 1550 nm. The minimum scanner aperture is 1 cm diameter and uses a combination of ferroelectric and nematic liquid crystals in addition to Rutile crystal birefringent prisms.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Programmable high-speed polarization multiplexed optical scanner

Nabeel A. Riza and Sajjad A. Khan
Opt. Lett. 28(7) 561-563 (2003)

Liquid-crystal-deflector based variable fiber-optic attenuator

Nabeel A. Riza and Sajjad A. Khan
Appl. Opt. 43(17) 3449-3455 (2004)

Ferroelectric liquid-crystal digital scanner

R. McRuer, L. R. McAdams, and J. W. Goodman
Opt. Lett. 15(23) 1415-1417 (1990)

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fray and D. Jones, “Liquid crystal light deflector,” U.S. Patent 4066334, (1978).
  2. B. Lofving and S. Hard, “Beam steering with two ferroelectric liquid-crystal spatial light modulators,” Opt. Lett. 23, 19, 1541–1543, (1998).
    [Crossref]
  3. M. H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” Journal of Microelectromechanical Systems 7, 1, 27–37, (1998).
    [Crossref]
  4. R. A. Meyer, “Optical beam steering using a multichannel lithium tantalate crystal,” Appl. Opt. 11, 3, 613–616, (1972).
    [Crossref] [PubMed]
  5. Q. W. Song, X. M. Wang, R. Bussjager, and J. Osman, “Electro-optic beam-steering device based on a lanthanum-modified lead zirconate titanate ceramic wafer,” Appl. Opt. 35, 17, 3155–3162, (1996).
    [Crossref] [PubMed]
  6. H. Meyer, D. Riekmann, K.P. Schmidt, U. J. Schmidt, M. Rahlff, E. Schroder, and W. Thust, “Design and performance of a 20-stage digital light beam deflector,” Appl. Opt. 11, 8, 1732–1736, (1972).
    [Crossref] [PubMed]
  7. R. McRuer, L. R. McAdams, and J. W. Goodman, “Ferroelectric liquid-crystal digital scanner,” Opt. Lett.,  15, 23, 1415–1417, (1990).
    [Crossref] [PubMed]
  8. C. M. Titus, P. J. Bos, and O. D. Lavrentovich, “Efficient, accurate liquid crystal digital light deflector,” Proc. SPIE,  3633, 244, (1999).
    [Crossref]
  9. N. A. Riza and S. A. Khan, “Programmable High Speed Polarization Multiplexed Optical Scanner,” Opt. Lett. 28, 7, 561–563, (2003).
    [Crossref] [PubMed]
  10. N. A. Riza, “Digital control polarization based optical scanner,” US Patent 6031658, (2000).
  11. W. Klaus, “Development of LC optics for free-space laser communications,” International Jounal of Electronic Communications 56, 4, 243–253, (2002).
    [Crossref]
  12. J. B. Hawthorn, A. Harwit, and M. Harwit, “Laser telemetry from space,” Science, 297, July 26, (2002).
  13. B. W. Matkin, “Steered agile beams program support for Army requirements,” Proc. SPIE,  4489, 1–12, Free-Space Laser Communication and Laser Imaging;David G. Voelz and Jennifer C. Ricklin; Eds, 46th Annual Meeting of SPIE, 29 July - 3 August (2001).
  14. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, (John Wiley & Sons Inc., New York, 1999).
  15. FLC Liquid Crystal Light Valves User Manual, Displaytech Inc., Longmont, CO, USA, (1996).
  16. M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Review of Scientific Instruments 71, Issue 9, 3290–3297, September (2000).
    [Crossref]
  17. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High Birefringence Isothiocyanato Tolane Liquid Crystals,” Japanese Journal of Applied Physics Part I,  42, 3463–3466, (2003).
    [Crossref]
  18. N. A. Riza and M. C. DeJule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19, Issue 14, 1013–1015, (1994).
    [Crossref] [PubMed]

2003 (2)

N. A. Riza and S. A. Khan, “Programmable High Speed Polarization Multiplexed Optical Scanner,” Opt. Lett. 28, 7, 561–563, (2003).
[Crossref] [PubMed]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High Birefringence Isothiocyanato Tolane Liquid Crystals,” Japanese Journal of Applied Physics Part I,  42, 3463–3466, (2003).
[Crossref]

2002 (1)

W. Klaus, “Development of LC optics for free-space laser communications,” International Jounal of Electronic Communications 56, 4, 243–253, (2002).
[Crossref]

2001 (1)

B. W. Matkin, “Steered agile beams program support for Army requirements,” Proc. SPIE,  4489, 1–12, Free-Space Laser Communication and Laser Imaging;David G. Voelz and Jennifer C. Ricklin; Eds, 46th Annual Meeting of SPIE, 29 July - 3 August (2001).

2000 (1)

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Review of Scientific Instruments 71, Issue 9, 3290–3297, September (2000).
[Crossref]

1999 (1)

C. M. Titus, P. J. Bos, and O. D. Lavrentovich, “Efficient, accurate liquid crystal digital light deflector,” Proc. SPIE,  3633, 244, (1999).
[Crossref]

1998 (2)

B. Lofving and S. Hard, “Beam steering with two ferroelectric liquid-crystal spatial light modulators,” Opt. Lett. 23, 19, 1541–1543, (1998).
[Crossref]

M. H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” Journal of Microelectromechanical Systems 7, 1, 27–37, (1998).
[Crossref]

1996 (1)

1994 (1)

1990 (1)

1972 (2)

Belopukhov, V. N.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Review of Scientific Instruments 71, Issue 9, 3290–3297, September (2000).
[Crossref]

Bos, P. J.

C. M. Titus, P. J. Bos, and O. D. Lavrentovich, “Efficient, accurate liquid crystal digital light deflector,” Proc. SPIE,  3633, 244, (1999).
[Crossref]

Bussjager, R.

Dabrowski, R.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High Birefringence Isothiocyanato Tolane Liquid Crystals,” Japanese Journal of Applied Physics Part I,  42, 3463–3466, (2003).
[Crossref]

DeJule, M. C.

Fray, A. F.

A. F. Fray and D. Jones, “Liquid crystal light deflector,” U.S. Patent 4066334, (1978).

Gauza, S.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High Birefringence Isothiocyanato Tolane Liquid Crystals,” Japanese Journal of Applied Physics Part I,  42, 3463–3466, (2003).
[Crossref]

Goodman, J. W.

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays, (John Wiley & Sons Inc., New York, 1999).

Hard, S.

Harwit, A.

J. B. Hawthorn, A. Harwit, and M. Harwit, “Laser telemetry from space,” Science, 297, July 26, (2002).

Harwit, M.

J. B. Hawthorn, A. Harwit, and M. Harwit, “Laser telemetry from space,” Science, 297, July 26, (2002).

Hawthorn, J. B.

J. B. Hawthorn, A. Harwit, and M. Harwit, “Laser telemetry from space,” Science, 297, July 26, (2002).

Jones, D.

A. F. Fray and D. Jones, “Liquid crystal light deflector,” U.S. Patent 4066334, (1978).

Khan, S. A.

Kiang, M. H.

M. H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” Journal of Microelectromechanical Systems 7, 1, 27–37, (1998).
[Crossref]

Klaus, W.

W. Klaus, “Development of LC optics for free-space laser communications,” International Jounal of Electronic Communications 56, 4, 243–253, (2002).
[Crossref]

Lau, K. Y.

M. H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” Journal of Microelectromechanical Systems 7, 1, 27–37, (1998).
[Crossref]

Lavrentovich, O. D.

C. M. Titus, P. J. Bos, and O. D. Lavrentovich, “Efficient, accurate liquid crystal digital light deflector,” Proc. SPIE,  3633, 244, (1999).
[Crossref]

Lofving, B.

Loktev, M. Yu.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Review of Scientific Instruments 71, Issue 9, 3290–3297, September (2000).
[Crossref]

Love, G. D.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Review of Scientific Instruments 71, Issue 9, 3290–3297, September (2000).
[Crossref]

Matkin, B. W.

B. W. Matkin, “Steered agile beams program support for Army requirements,” Proc. SPIE,  4489, 1–12, Free-Space Laser Communication and Laser Imaging;David G. Voelz and Jennifer C. Ricklin; Eds, 46th Annual Meeting of SPIE, 29 July - 3 August (2001).

McAdams, L. R.

McRuer, R.

Meyer, H.

Meyer, R. A.

Muller, R. S.

M. H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” Journal of Microelectromechanical Systems 7, 1, 27–37, (1998).
[Crossref]

Naumov, A. F.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Review of Scientific Instruments 71, Issue 9, 3290–3297, September (2000).
[Crossref]

Osman, J.

Rahlff, M.

Riekmann, D.

Riza, N. A.

Schmidt, K.P.

Schmidt, U. J.

Schroder, E.

Seed, A.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High Birefringence Isothiocyanato Tolane Liquid Crystals,” Japanese Journal of Applied Physics Part I,  42, 3463–3466, (2003).
[Crossref]

Solgaard, O.

M. H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” Journal of Microelectromechanical Systems 7, 1, 27–37, (1998).
[Crossref]

Song, Q. W.

Thust, W.

Titus, C. M.

C. M. Titus, P. J. Bos, and O. D. Lavrentovich, “Efficient, accurate liquid crystal digital light deflector,” Proc. SPIE,  3633, 244, (1999).
[Crossref]

Vdovin, G. V.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Review of Scientific Instruments 71, Issue 9, 3290–3297, September (2000).
[Crossref]

Vladimirov, F. L.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Review of Scientific Instruments 71, Issue 9, 3290–3297, September (2000).
[Crossref]

Wang, H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High Birefringence Isothiocyanato Tolane Liquid Crystals,” Japanese Journal of Applied Physics Part I,  42, 3463–3466, (2003).
[Crossref]

Wang, X. M.

Wen, C. H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High Birefringence Isothiocyanato Tolane Liquid Crystals,” Japanese Journal of Applied Physics Part I,  42, 3463–3466, (2003).
[Crossref]

Wu, S. T.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High Birefringence Isothiocyanato Tolane Liquid Crystals,” Japanese Journal of Applied Physics Part I,  42, 3463–3466, (2003).
[Crossref]

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays, (John Wiley & Sons Inc., New York, 1999).

Appl. Opt. (3)

International Jounal of Electronic Communications (1)

W. Klaus, “Development of LC optics for free-space laser communications,” International Jounal of Electronic Communications 56, 4, 243–253, (2002).
[Crossref]

Japanese Journal of Applied Physics Part I (1)

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High Birefringence Isothiocyanato Tolane Liquid Crystals,” Japanese Journal of Applied Physics Part I,  42, 3463–3466, (2003).
[Crossref]

Journal of Microelectromechanical Systems (1)

M. H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” Journal of Microelectromechanical Systems 7, 1, 27–37, (1998).
[Crossref]

Opt. Lett. (4)

Proc. SPIE (2)

C. M. Titus, P. J. Bos, and O. D. Lavrentovich, “Efficient, accurate liquid crystal digital light deflector,” Proc. SPIE,  3633, 244, (1999).
[Crossref]

B. W. Matkin, “Steered agile beams program support for Army requirements,” Proc. SPIE,  4489, 1–12, Free-Space Laser Communication and Laser Imaging;David G. Voelz and Jennifer C. Ricklin; Eds, 46th Annual Meeting of SPIE, 29 July - 3 August (2001).

Review of Scientific Instruments (1)

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Review of Scientific Instruments 71, Issue 9, 3290–3297, September (2000).
[Crossref]

Other (5)

P. Yeh and C. Gu, Optics of Liquid Crystal Displays, (John Wiley & Sons Inc., New York, 1999).

FLC Liquid Crystal Light Valves User Manual, Displaytech Inc., Longmont, CO, USA, (1996).

J. B. Hawthorn, A. Harwit, and M. Harwit, “Laser telemetry from space,” Science, 297, July 26, (2002).

N. A. Riza, “Digital control polarization based optical scanner,” US Patent 6031658, (2000).

A. F. Fray and D. Jones, “Liquid crystal light deflector,” U.S. Patent 4066334, (1978).

Supplementary Material (3)

» Media 1: MPG (5063 KB)     
» Media 2: MPG (1405 KB)     
» Media 3: MPG (5063 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Design of the proposed hybrid analog-digital coarse-fine scan P-MOS module for continuous 1-D scanning. PS: 90° Polarization Switch, W: Passive Crystal Prism; WNLC; Nematic Liquid Crystal Electrically Programmable Prism set for a given drive voltage. Shown are four possible 1-D scan beams produced by digital only switching of the PSs.

Fig. 2.
Fig. 2.

Top views of the NLC prism used for continuous scan in P-MOS. NLC molecule orientations are shown for (a) zero control signal applied, (b) when a control signal is present that reorients the NLC molecules to induce a spatial prism-like refractive index change and (c) the interferogram of the NLC prism using a 1550 nm source. p: horizontally polarized light component.

Fig. 3.
Fig. 3.

(1,921 KB) Experimentally obtained far-field spot pattern for a basic 2-stage 1-D coarse-fine P-MOS demonstration at 1550 nm.

Fig. 4.
Fig. 4.

(a). Proposed Biasing Technique for the NLC prism. Fig. 4(bd): The effective NLC cell shape and beam deflections for a two stage P-MOS where one NLC prism and one birefringent crystal prism have been used as shown in Fig. 1. Shown are NLC device states when (b): drive signal is OFF, (c): switch is set to state A (i.e., when VA>VB), and (d): switch is in state B (i.e., when VB>VA). Dark spots along the Y-axis represent the far-field spots as produced by the shown NLC device state while the white spots represent the total scan spots possible including those from the alternative NLC device states.

Fig. 5.
Fig. 5.

(1,750 KB) Experimentally obtained far-field spot pattern for 4-stage 1-D coarse digital P-MOS demonstration at 1550nm. α 1=-9.95°, α 2=19.95°, α 3=4.95° and α 4=9.95° using Rutile prisms (ne=2.454, no=2.71 @ λ=1550nm). α: apex angle of prism.

Fig. 6.
Fig. 6.

Simulated steering angles for a 4-stage coarse and one stage fine 1-D digital P-MOS at 1550 nm that can continuously access any spot within a 40.92° wide scan domain. αLC=±0.35°, α1=-9.95°, α2=19.95°, α3=4.95° and α4=9.95° using Rutile prisms (ne=2.454, no=2.71 @ λ=1550 nm).

Fig. 7.
Fig. 7.

(1,651 KB) Demonstration of continuous steering using NLC prism in the 4-stage coarse 1-D P-MOS scanner of Fig. 5. αNLC=±0.35° (NLC: Merck BL006, Δn=0.229 at 1550 nm and 25°C).

Fig. 8.
Fig. 8.

Experimentally measured scanner optical throughput variation for the 4-stage 1-D coarse digital P-MOS demonstration at 1550 nm.

Fig. 9.
Fig. 9.

(5,064 KB) Experimentally obtained 2-D far-field spot pattern for 2-stage coarse and 2-stage fine P-MOS demonstration at 1550 nm.

Fig. 10.
Fig. 10.

(1,405 KB) Experimentally obtained 3-D spot pattern for 2-stage coarse and 3-stage fine P-MOS demonstration at 1550 nm.

Fig. 11.
Fig. 11.

Experimentally measured rise time for the FLC PS used in P-MOS demonstration at 1550 nm.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Γ = 2 π Δ n . d λ
d = ( λ . Δ n ) 2
ϕ ( V , f , x ) = [ 2 π λ ] n ( V , f , x ) . d
ϕ ( V , f , x = 0 ) = ϕ o = [ 2 π λ ] n ( V , f , 0 ) . d ,
ϕ ( V , f , x = D ) = ϕ D = [ 2 π λ ] n ( V , f , D ) . d .
Δ ϕ A = ϕ D ϕ o ,
Δ ϕ A = ( 2 π λ ) [ n e n ( V , f , 0 ) ] d .
( 2 π D λ ) sin θ w 1 = Δ ϕ A ,
( 2 π D λ ) sin θ w 1 = ( 2 π λ ) [ n e n ( V , f ) ] . d
θ w 1 ( V , f ) = sin 1 { d D [ n e n ( V , f ) ] } ,
Δ ϕ B = ϕ D ϕ o ,
Δ ϕ B = ( 2 π λ ) [ n ( V , f , D ) n e ] . d
Δ ϕ B = Δ ϕ A
F = D 2 8 d ( Δ n c Δ n p ) ,
n inc sin θ inc = n o sin θ o = n e sin θ e ,
θ exit [ o ] = sin 1 [ n o sin ( θ o + α ) n inc ] ( α + θ inc )
θ exit [ e ] = sin 1 [ n e sin ( θ e + α ) n inc ] ( α + θ inc ) ,
θ exit [ o ] = sin 1 [ n o sin ( α ) ] α
θ exit [ e ] = sin 1 [ n e sin ( α ) ] α
Δ θ = θ exit [ e ] θ exit [ o ] .

Metrics